Recommender-Systems.com: A Central Platform for the Recommender-System Community [Pre-Print]

Abstract We introduce Recommender-Systems.com (RS_c) as a central platform for the recommender-systems community. RS_c provides regular news on important events in the community as well as curated lists of recommender-system resources including datasets, algorithms, jobs, software, and learning materials. Based on a survey with 28 participants – mostly authors at Read more…

Synthetic vs. Real Reference Strings for Citation Parsing, and the Importance of Re-training and Out-Of-Sample Data for Meaningful Evaluations: Experiments with GROBID, GIANT and CORA [pre-print]

ABSTRACT Citation parsing, particularly with deep neural networks, suffers from a lack of training data as available datasets typically contain only a few thousand training instances. Manually labelling citation strings is very time-consuming, hence synthetically created training data could be a solution. However, as of now, it is unknown if Read more…

Darwin & Goliath, Recommendations As a Service in our Blog

Darwin & Goliath: A White-Label Recommender-System As-a-Service with Automated Algorithm-Selection

This is the pre-print of our upcoming publication at the 13th ACM Conference on Recommender Systems (RecSys’19). Joeran Beel, Alan Griffin, and Conor O’Shea. 2019. Darwin & Goliath: A White-Label Recommender-System As-a-Service with Automated Algorithm-Selection. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys’19). ACM, New York, NY, Read more…