Lukas Wegmeth

Lukas Wegmeth
Ph.D. Student

Phone: +49 271 740-2591
Email: lukas.<last-name>@uni-siegen.de
Office: H-C 8318
Address: Office and postal address

Lukas Wegmeth is a Ph.D. Student of the Intelligent Systems Group at the University of Siegen. Before joining the ISG he completed his bachelor’s and master’s degree in Medical Computer Science at the University of Siegen. During his time as a graduate student, Lukas set his focus on the topic of Machine Learning and collaborated with different chairs of the University of Siegen to work on and release scientific research papers in the field.

Lukas will focus research towards his Ph.D. on Recommender Systems (RecSys) and Automated Machine Learning (AutoML).

Publications

2024

Beel, Joeran; Jannach, Dietmar; Said, Alan; Shani, Guy; Vente, Tobias; Wegmeth, Lukas

Best-Practices for Offline Evaluations of Recommender Systems Proceedings Article

In: Bauer, Christine; Said, Alan; Zangerle, Eva (Ed.): Report from Dagstuhl Seminar 24211 – Evaluation Perspectives of Recommender Systems: Driving Research and Education, 2024.

BibTeX

Baumgart, Moritz; Wegmeth, Lukas; Vente, Tobias; Beel, Joeran

e-Fold Cross-Validation for Recommender-System Evaluation Proceedings Article

In: International Workshop on Recommender Systems for Sustainability and Social Good (RecSoGood) at the 18th ACM Conference on Recommender Systems (ACM RecSys), 2024.

BibTeX

Beel, Joeran; Wegmeth, Lukas; Vente, Tobias

E-fold Cross-validation: A Computing and Energy-efficient Alternative to K-fold Cross-validation with Adaptive Folds [Proposal] Journal Article

In: OSF Preprints, 2024.

Links | BibTeX

Wegmeth, Lukas; Vente, Tobias; Said, Alan; Beel, Joeran

EMERS: Energy Meter for Recommender Systems Proceedings Article

In: International Workshop on Recommender Systems for Sustainability and Social Good (RecSoGood) at the 18th ACM Conference on Recommender Systems (ACM RecSys), 2024.

Links | BibTeX

Vente, Tobias; Wegmeth, Lukas; Said, Alan; Beel, Joeran

From Clicks to Carbon: The Environmental Toll of Recommender Systems Proceedings Article

In: Proceedings of the 18th ACM Conference on Recommender Systems, pp. 580–590, Association for Computing Machinery, Bari, Italy, 2024, ISBN: 9798400705052.

Abstract | Links | BibTeX

Vente, Tobias; Mehta, Zainil; Wegmeth, Lukas; Beel, Joeran

Greedy Ensemble Selection for Top-N Recommendations Proceedings Article

In: RobustRecSys Workshop at the 18th ACM Conference on Recommender Systems (ACM RecSys), 2024.

BibTeX

Beel, Joeran; Said, Alan; Vente, Tobias; Wegmeth, Lukas

Green Recommender Systems – A Call for Attention Journal Article

In: Recommender-Systems.com Blog, 2024.

Links | BibTeX

Beel, Joeran; Wegmeth, Lukas; Michiels, Lien; Schulz, Steffen

Informed Dataset Selection with ‘Algorithm Performance Spaces’ Proceedings Article

In: 18th ACM Conference on Recommender Systems, pp. 1085–1090, Association for Computing Machinery, Bari, Italy, 2024, ISBN: 9798400705052.

Abstract | Links | BibTeX

Wegmeth, Lukas; Vente, Tobias; Beel, Joeran

Recommender Systems Algorithm Selection for Ranking Prediction on Implicit Feedback Datasets Proceedings Article

In: 18th ACM Conference on Recommender Systems (ACM RecSys), 2024.

Links | BibTeX

Meister, Philipp; Wegmeth, Lukas; Vente, Tobias; Beel, Joeran

Removing Bad Influence: Identifying and Pruning Detrimental Users in Collaborative Filtering Recommender Systems Proceedings Article

In: RobustRecSys Workshop at the 18th ACM Conference on Recommender Systems (ACM RecSys), 2024.

BibTeX

Wegmeth, Lukas; Vente, Tobias; Purucker, Lennart

Revealing the Hidden Impact of Top-N Metrics on Optimization in Recommender Systems Proceedings Article

In: Goharian, Nazli; Tonellotto, Nicola; He, Yulan; Lipani, Aldo; McDonald, Graham; Macdonald, Craig; Ounis, Iadh (Ed.): 46th European Conference on Information Retrieval (ECIR), pp. 140–156, Springer Nature Switzerland, Cham, 2024, ISBN: 978-3-031-56027-9.

Abstract | Links | BibTeX

2023

Wegmeth, Lukas

Improving Recommender Systems Through the Automation of Design Decisions Proceedings Article

In: Proceedings of the 17th ACM Conference on Recommender Systems, pp. 1332-1338, 2023.

Abstract | Links | BibTeX

Wegmeth, Lukas; Vente, Tobias; Beel, Joeran

The Challenges of Algorithm Selection and Hyperparameter Optimization for Recommender Systems Journal Article

In: COSEAL Workshop 2023, 2023.

Links | BibTeX

Wegmeth, Lukas; Vente, Tobias; Purucker, Lennart; Beel, Joeran

The Effect of Random Seeds for Data Splitting on Recommendation Accuracy Proceedings Article

In: Proceedings of the 3rd Perspectives on the Evaluation of Recommender Systems Workshop, 2023.

Abstract | Links | BibTeX

2022

Wegmeth, Lukas; Beel, Joeran

CaMeLS: Cooperative Meta-Learning Service for Recommender Systems Proceedings Article

In: Proceedings of the 2nd Perspectives on the Evaluation of Recommender Systems Workshop, 2022.

Abstract | Links | BibTeX

Wegmeth, Lukas; Beel, Joeran

Cooperative Meta-Learning Service for Recommender Systems Journal Article

In: COSEAL Workshop 2022, 2022.

Links | BibTeX

Wegmeth, Lukas

The Impact of Feature Quantity on Recommendation Algorithm Performance: A Movielens-100K Case Study Proceedings Article

In: arXiv:2207.08713, 2022.

Abstract | Links | BibTeX