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Recommender systems are a cornerstone of many industries, from e-
commerce to streaming services. Their role in shaping user choices
is significant, driving customer engagement and revenue. However,
the computational demands of recommender systems have surged
– by a factor of 42 over the past decade [16]. As recommender
systems become ubiquitous on digital platforms, the environmental
and financial costs of their operation escalate. For example, creating
a single recommender-system research paper emits an average of
3,297 kilograms of CO2 [16], with large-scale production systems
contributing even more to carbon emissions. This presents a new
challenge to the community: sustainability.

Some researchers, including ourselves, have explored Green Rec-
ommender Systems, or sustainable recommender systems [2, 3, 8,
10, 11, 13, 16], and presented practical tools to measure the energy
consumption of recommender system experiments [17]. However,
much more work is needed to fully assess and reduce the envi-
ronmental impact of recommender systems. Therefore, with this
call for attention, we urge the recommender system community to
thoroughly explore the topic of Green Recommender Systems as a
framework for addressing sustainability.

We define Green Recommender Systems as follows

“Green Recommender Systems” are recommender sys-
tems designed to minimize their environmental im-
pact throughout their life cycle – from research and
design to implementation and operation. Green Rec-
ommender Systems typically aim to match the per-
formance of traditional systems but may also ac-
cept trade-offs in accuracy or other metrics to prior-
itize sustainability. Minimizing environmental im-
pact typically but not necessarily means minimizing
energy consumption and CO2 emissions.

Green Recommender Systems’ principles are not tied to specific
algorithms or techniques1. We also point out that we do not con-
sider recommender systems that recommend eco-friendly items

1While we speak mainly of machine learning algorithms, Green Recommender Systems
also apply to non-machine-learning algorithms.

as “green” if the systems themselves are not designed to minimize
their environmental impact.

Examples of “green” recommender systems include the follow-
ing. Training a deep learning-based recommender system on an
Apple M1 chip, rather than an NVIDIA RTX 3090, may be consid-
ered “green”: For some algorithms, the M1 consumes up to 90%
less energy than the NVIDIA GPU, while achieving the same per-
formance, albeit with longer training times [16]. Similarly, down-
sampling large datasets may be “green”, as not all recommender
algorithms require large datasets for effective training or evalua-
tion [2]. Also, alternatives to k-fold cross-validation, such as e-fold
cross-validation [3, 5, 10], may be “green” since fewer folds are
needed while maintaining comparable generalizability.

The importance of Green Recommender Systems lies in their
potential to reduce the environmental footprint of large-scale rec-
ommendation engines and experiments. Recent estimates suggest
machine learning systems, especially deep learning models, require
vast computational power. Recommender systems, often deployed
at massive scales, exacerbate this issue. These systems run continu-
ously, analyzing user interactions, updating models, and delivering
personalized recommendations in real time. The energy costs of
these processes are often invisible but accumulate rapidly [14, 16].

Why should the community care about this issue? The push
for sustainability in artificial intelligence and machine learning
is rapidly gaining momentum [1, 6, 7, 9, 12, 15], but sustainable
recommender systems, or Green Recommender Systems, remain
significantly underrepresented in this discourse. Part of the reason is
the pervasive focus on accuracy and user satisfactionmetrics, which,
while essential, overlook the growing environmental cost. Moreover,
the current trend of ever-increasing model complexity and size
directly conflicts with sustainability goals. Green Recommender
Systems offer a necessary counterbalance by introducing a design
philosophy that accounts for resource limitations and encourages
the development of more efficient models.

Researchers and practitioners in recommender systems should
consider energy and resource efficiency as part of their evaluation
criteria. This shift could foster the development of more sustainable
algorithms, architectures, and deployment strategies. The concept
of “performance” should expand to include energy consumption
alongside traditional metrics like accuracy and click-through rates.
While some argue that energy-efficient models may sacrifice rec-
ommendation quality, the goal of Green Recommender Systems is
to strike a balance between sustainability and performance or even
maintain the same performance with fewer resources.
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Incorporating green principles into recommender systems offers
practical benefits. Efficient models can reduce operational costs,
lower server loads, and enhance user experience by delivering faster
recommendations. As energy costs rise and concerns about the en-
vironmental impact of technology grow, companies have a financial
incentive to invest in sustainable system designs. Green Recom-
mender Systems can future-proof recommendation technologies
against these emerging challenges.

The recommender systems community must recognize the criti-
cal importance of sustainability in its research agenda. By focusing
on Green Recommender Systems, the field can contribute meaning-
fully to broader global efforts in AI for sustainability. It is no longer
sufficient to pursue only accuracy and user satisfaction. Instead,
the community must fully embrace the responsibility to develop
systems that are both effective and sustainable.

The time has come for the recommender systems community to
take action. Green Recommender Systems, or Green RecSys, are
a practical, necessary response to the increasing computational
demands of modern AI. The community must pay more attention
to the environmental impact of their systems and work toward a
future where sustainability is central to recommendation system
design. This will not only benefit the planet but also ensure the
long-term viability of the technology, while enhancing business
value by reducing operational costs and aligning with the demand
for eco-conscious solutions.2
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