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ABSTRACT
This paper presents a reproduction and validation of the experiment
described in "Informed Dataset Selection with ‘Algorithm Perfor-
mance Spaces’" by Joeran Beel et al. (2024)[2]. The study evaluates
15 diverse recommendation algorithms—including LR, NFM, AFM,
DCN, DeepFM, DSSM, FiGNN, AutoInt, EulerNet, FM, FNN, FwFM,
PNN, Wide Deep, and xDeepFM—across 17 datasets sourced from
Kaggle [4]. These datasets span a wide range of domains, including
product reviews and ratings for items such as iPhones, airlines,
movies, books, clothing, and hotels among others. The experiments
demonstrate that random dataset selection does not provide mean-
ingful insight into algorithm performance. In contrast, leveraging
the Algorithm Performance Space (APS) allows for a more informed
and structured evaluation process.
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1 INTRODUCTION
1.1 Background
In recommender systems research, the choice of datasets used for
experimentation is a foundational aspect of model development and
evaluation. Recommender algorithms are designed to predict user
preferences based on patterns in historical data, and the nature of
the dataset directly influences how those patterns are learned, how
well they generalize, and how model performance is interpreted. A
model that performs well on one dataset may fail on another, due to
differences in user behavior, item diversity, sparsity levels, domain
specificity, and other underlying data characteristics. This makes
the selection of datasets not just a technical detail, but a critical
factor that can significantly shape the outcomes of experimental
research. As recommender systems continue to expand into a wider
range of domains and are used by increasingly diverse user groups
with varying preferences and behaviors, the importance of selecting
datasets thoughtfully has been greater. There is a growing need
for principled, transparent, and performance-aware methods of
dataset selection that go beyond simply picking what is convenient
or traditionally used. Such methods should be designed to capture
the complexity and variability of real-world environments where
these systems operate. In practice, however, the process of choos-
ing datasets is often informal or based on convention. Researchers
frequently use datasets that are publicly available, well-known, or
commonly referenced in prior work. Datasets like MovieLens and
Amazon product reviews are widely used benchmarks in the recom-
mender systems community. These are often selected because they

Figure 1: Illustration of an APS diagram [2]

are typically marked as "standard" or "public," and are selected with-
out a deeper examination of whether they offer sufficient variety
or challenge to properly test and differentiate algorithms[2].

1.2 Research Problem
Choosing datasets mainly because they are popular, easy to ac-
cess, or widely cited creates several challenges in recommender
system research. When researchers use well-known benchmarks
like MovieLens or Amazon reviews simply out of popularity or
convenience, evaluations often fail to capture the full diversity of
real-world recommendation problems. These datasets might share
similar properties—such as specific domains, user demographics,
or data sparsity—that may favor some algorithms while disadvan-
taging others. Relying on popular datasets can lead to results that
don’t generalize well beyond these familiar settings; an algorithm
tuned on movie data may not perform as well in retail or social
media contexts. Moreover, many popular datasets don’t provide
enough variety or difficulty to clearly differentiate between algo-
rithms, making it harder to identify true improvements and slowing
research progress.

To illustrate, if all algorithms perform similarly on a given dataset,
it becomes hard to tell their individual strengths and weaknesses
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or to identify which methods work better for specific problems.
Additionally, datasets that are extremely sparse or contain a lot of
noise can disproportionately affect some algorithms, causing results
to be skewed and not accurately reflecting how well the algorithms
would perform in real-world settings. This can mask important
differences in algorithm effectiveness and limit the usefulness of
the evaluation. Therefore, Careful consideration of dataset selection
is essential when evaluating algorithms.

1.3 Original Work
What the authors did:
To address the problem of choosing datasets for recommender

systems researches, the authors proposed the method Algorithm
Performance Space (APS)—a framework to support more thoughtful,
performance-based dataset selection.[2]

APS visualizes datasets as points in an n-dimensional space, with
each dimension measuring the performance of a specific recommen-
dation algorithm based on the nDCG metric. The distance between
datasets reflects how differently algorithms perform on them. This
idea redefines dataset diversity not by metadata (e.g., domain, spar-
sity) but by algorithmic behavior. In addition to that, APS classifies
the datasets according their solvability.[2]

To operationalize APS, the authors ran 29 algorithms across 95
datasets using RecBole. This generated a high-dimensional space,
which they further explored through 812 mini-APS, each being a 2D
subspace based on a pair of algorithms. They also applied Principal
Component Analysis (PCA) to create a 2D projection summarizing
the overall space. Through this, they produced visual tools that
illustrate how datasets relate based on algorithmic performance
similarities or differences.[2]

Main findings:
They confirmed that dataset choice in recommender systems is

frequently based on convenience or popularity rather than mean-
ingful metrics. One striking observation was that Amazon datasets,
despite being widely used and appearing diverse based on meta-
data in prior studies, tend to be highly similar in APS—suggesting
algorithms perform similarly on them. This calls into question their
utility for evaluating generalization or distinguishing algorithmic
strengths.

In contrast, MovieLens datasets, often seen as “standard” or even
limited, showed more diversity in algorithmic performance, thus
making them more valuable than previously thought. The authors
also noted clusters in APS: datasets in the top-right performed well
across all algorithms—labeled as “solved problems”—while those in
the bottom-left were uniformly difficult, offering opportunities for
further research.

Interestingly, many datasets clustered closely in APS, meaning
algorithms tended to succeed or fail consistently across them. This
clustering emphasizes the challenge of finding truly diverse datasets.
The PCA-reducedAPS revealed thatmany less popular datasets (e.g.,
FilmTrust, Docear, KGRec-Music) appear far apart, highlighting
them as promising candidates for novel research.

Conclusion:

APS provides a transparent, performance-oriented framework
for selecting datasets, enabling researchers to justify their choices
based on actual algorithm behavior rather than availability or tra-
dition. It encourages the identification of datasets that offer real
algorithmic challenges and promotes generalizable evaluation. Al-
though the APS framework is still evolving, it represents a signifi-
cant shift from arbitrary dataset use to evidence-driven experimen-
tation.

The authors envision APS becoming a community resource po-
tentially expandable and customizable—where researchers could
map new datasets or algorithms and visualize their positions. They
emphasize that while APS should not rigidly dictate dataset choice,
it enables a new level of rigor and clarity in experimental design.
Open questions remain, such as how best to calculate distances in
high dimensions, whether to standardize APS globally, and how to
balance comprehensiveness with usability.

Ultimately, APS is a powerful conceptual and practical tool that
may help the recommender systems communitymove toward better
reproducibility, fairness, and scientific progress.

1.4 Research Goal
To prove the assumptions made by the authors in the original
paper [2], their work should be reproduced using different param-
eter,algorithms,datasets and/or metrics. This paper shows the re-
production results of using different algorithms and datasets than
which were used in the original paper. The assumption should hold
if it was clear from the results that choosing diverse datasets leads
to a better ranking and evaluation of the algorithms than just choos-
ing randomly or choosing datasets that are close to each other in
the APS diagrams.

2 METHODOLOGY
My experiment aims to reproduce and validate the findings of the
paper "Informed Dataset Selection with Algorithm Performance
Spaces" by implementing a similar framework on a new set of real-
world datasets. The work was carried out using Python 3.11 on a
personal ASUS laptop equipped with an AMD Ryzen 5000 series
CPU, and the entire coding environment was managed through
Visual Studio Code. The source code, configurations, and dataset
loader files for this project are available in a GitHub repository,
referenced as [3].

To remain as faithful as possible to the original methodology,
the same pipeline structure was followed. However, a significant
change was made to the dataset filtering step. The original paper
used a 5-core filter, which retains only users and items with at
least five interactions. In this experiment, a 1-core filter was used
instead. This decision was made based on the nature of the datasets
being processed—many were relatively small or lacked dense in-
teraction histories. Applying a 5-core filter would have excluded
large portions of the data, so the 1-core threshold was chosen to
retain more information while still meeting a minimum level of
interaction integrity.

This reproduction did not include any of the datasets from
the original work; instead, all datasets were newly sourced from
Kaggle[4], covering a broad range of domains, user behaviors, and
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product categories. Initially, 32 datasets were selected. These in-
cluded product reviews and ratings for different items: a comparison
of Adidas vs. Nike reviews, wine reviews, two separate airline re-
view datasets, two datasets carrying different reviews about various
products, one hotel reviews dataset, an anime rating dataset, and re-
views covering books, clothing, Disneyland, Starbucks, Ryanair, lap-
tops, video games,iPhone and rottentomato movies rating dataset.

Each dataset was manually inspected, and the column names
were modified to match the formatting requirements for the rec-
ommender system pipeline, the underlying data values remained
unchanged. These requirements included the presence of a user
ID column, an item ID column, a rating column, and if available, a
timestamp column and metadata features. Following this review,
15 datasets were excluded from the project due to issues such as
missing critical columns, invalid data types, or extensive gaps in the
data that made them unusable. As a result, 17 datasets were used in
the final experiment. For each dataset, a dedicated data loader was
written, and the dataset was stored in its own directory, containing
the raw .csv file and all intermediate and final outputs.

To perform the algorithmic experiments, the project utilized the
RecBole library—a comprehensive Python framework for develop-
ing and benchmarking recommender systems. The algorithms used
in this reproduction did not include any of the algorithms from
the original work. A total of 15 algorithms were evaluated: Logis-
tic Regression (LR), Neural Factorization Machine (NFM), Atten-
tional Factorization Machine (AFM), Deep Cross Network (DCN),
DeepFM, Deep Structured Semantic Model (DSSM),Feature-specific
Interpretable Graph Neural Network (FiGNN), Automatic Feature
Interaction Learning (AutoInt), EulerNet, Factorization Machine
(FM), Feedforward Neural Network (FNN), Field-weighted Factor-
ization Machine (FwFM), Product-based Neural Network (PNN),
Wide Deep, and xDeepFM.

The pipeline for processing and training followed several sequen-
tial steps for each dataset. The first stage was fitting, in which the
raw dataset was preprocessed and transformed into a structured
format required by RecBole. The processed data was saved back
into the dataset’s directory. Following this, the data went through
an atomic transformation, which further refines the data structure
into the specific input format used by RecBole for training and
evaluation.

Once preprocessing was completed, the next phase involved
training and evaluation. Each dataset was split into five folds to per-
form cross-validation. For each fold, every algorithm was trained
for 50 epochs. After training, the models were used to generate
predictions, and these predictions were evaluated using NDCG@10
(Normalized Discounted Cumulative Gain at rank 10) among others:
NDCG@1,HR@1, Recall@1, NDCG@3,HR@3, Recall@3, NDCG@5,
HR@5, Recall@5, HR@10, Recall@10, NDCG@20, HR@20, Re-
call@20.

At the end of the process, each dataset folder contained multiple
JSON result files summarizing the different stages of the pipeline.
These included a fit results json file for the fitting process, a pre-
diction results json file for the model’s prediction outputs, and an
evaluation results json file containing the evaluation metrics for
each fold and each algorithm.

Once all evaluations were complete, the results were compiled
into a consolidated file namedmerged.csv, which listed performance

metrics across all datasets and algorithms. This merged dataset was
then used to generate Algorithm Performance Space (APS) diagrams
based on the metric NDCG@10. APS plots are two-dimensional
visualizations in which each point represents a dataset, and its
position reflects the performance of two algorithms. Since there
were 15 algorithms, 210 unique APS plots were generated, each
comparing a pair of algorithms. These diagrams helped visualize
how similarly or differently datasets behaved when evaluated by
different models.

In each APS plot, datasets were represented as points and were
randomly colored to distinguish them visually. Datasets that were
not evaluated (for example, due to an error during training or evalu-
ation, or having zero NDCG) were excluded from the corresponding
plots. These APS diagrams make it easy to spot patterns—for in-
stance, datasets that cluster closely suggest similar algorithmic
behavior and therefore less diversity, while datasets that are widely
spread indicate more varied behavior and higher diversity.

In addition to the APS plots, a Principal Component Analysis
(PCA) was applied to the full algorithm-dataset performance matrix
to reduce it to two dimensions. This provided a single, more inter-
pretable plot showing how all datasets are distributed based on the
variance in algorithm performance. As in the original paper, it was
emphasized that the PCA axes do not directly reflect performance
metrics but are instead linear combinations that capture the most
variance. The resulting PCA plot also featured randomly colored
datasets for easier interpretation.

The experiment successfully reproduced the key ideas of the APS
paper, adapting them to available datasets and computing resources.
Results show that APS is a useful tool for analyzing dataset diver-
sity and guiding dataset selection in recommender system research.
Some datasets yield uniform algorithm performance, offering lim-
ited value, while others show diverse results, making them more
useful for benchmarking and development.

3 RESULTS & DISCUSSION
Results The result was 210 2D-APS diagrams, in addition to a PCA
diagram. The goal of this experiment was to prove the assumptions
made by the original authors, in the following we will prove the
main assumption, according to some diagrams form the results.

APS
Main assumption in the original paper:

"The rationale behind the APS is as follows. If some
datasets D1...Dm are close to each other in the APS,
this indicates that all al gorithms A1...An in the APS
have performed similarly on them.To clarify, this
does not imply that all n algorithms achieved the
same performance on the m datasets. It could be,
for instance, that algo rithms A1, A2 and A3 per-
formed well on the m datasets; algorithms A4 and A5
performed poorly on the m datasets and algorithms
A6...An exhibited mediocre performance on the m
datasets. In other words, algorithm A1 performed
consistently across the m datasets, A2 performed con-
sistently across the m datasets (but not neces sar-
ily similarly to A1) and all other n algorithms also
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performed consistently across the m datasets. There-
fore, it seems likely to us that a novel algorithm
An+1– that is not part of the APS– will also per-
form consistently across the m datasets (whether per-
formance will be high, low or mediocre cannot be
predicted). If, for instance, algorithm An+1 performs
poorly on one or two of the n datasets, we consider
it extremely likely that algorithm An+1 will per-
form similarly on the remaining n datasets because
this behavior was true for all n algorithms. Conse-
quently, evaluating the novel algorithm on one or
two of the n datasets would be sufficient" ... "Based
on the above rationale, we argue that researchers
typically should choose datasets with high diversity,
i.e., datasets that are highly distant from each other
in the APS. This approach allows researchers to de-
termine whethertheiralgorithmisan"all-rounder" that
performs well across various scenarios or excels only
in specific areas of the APS"[2]

Figure 2

To validate the assumption, one can observe how a group of
algorithms behaves across a set of datasets by examining their
APS diagrams. If multiple algorithms consistently perform simi-
larly—indicated by tight clustering of datasets—then introducing
a new algorithm and seeing the same clustering pattern suggests
it behaves similarly too. This would prove the assumption and
supports the idea that evaluating one or two algorithms on just a
few representative clustered datasets may be sufficient to infer the
performance on the other algorithms.

So by looking at the datasets marked within a red circle in the
diagrams in figure 2, we notice that the assumption holds. These
datasets are close to each other, hence not diverse. If we look at
how the 6 algorithms AFM, DCN, FM, DeepFM, EulerNet, DSSM we
notice that all these algorithms performed consistently and similar
on the n datasets, marked within the red circle. According to the
assumption, a new algorithm should now also perform consistently
and similar, which we notice by looking at new 2 algorithms FwFM

and xDeepFM in figure 3. They performed similarly to the other 6
algorithms. That means just by looking at one or two algorithms
and their performance to n close datasets (not diverse), we would be
able to expect the evaluation of the rest of all the other algorithms,
if the first two algorithms performed similarly.

Figure 3

We now see that we can not evaluate the algorithms based on
random selection of the datasets, and for sure we should not choose
datasets that are close to each other in the APS diagrams, as this will
not help evaluate the algorithms fairly, or rank them or understand
them, since they will all perform similarly. Instead, we should pick
diverse datasets, datasets that are plotted far from each other in the
APS diagrams, where the same algorithm performs differently on
them, well on some, and poorly on the others. We focus now on the
datasets that are marked within green circles in figure 2 and 3, we
notice that these three datasets are diverse, and algorithms perform
differently on them. Studying the evaluation on these algorithms
will deliver us some clear ranking of which algorithm is better than
which, for example, algorithm AFM showed the best performance
overall, since it showed very good performance values on two of
the three datasets, then comes algorithm FwFM, with almost as
high performance as in AFM, on two of the three datasets. In this
case, choosing diverse datasets helped us pick a better algorithm
than another. Aps can also help us have a better understanding of
the algorithms, where we can see on which datasets the algorithm
performed well, and have an idea where this algorithm might be
suitable the best, and on which kind of data.
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Figure 4: Different APS diagrams from the results

PCA

Figure 5 plot shows a 2D projection of the Algorithm Perfor-
mance Space (APS) using Principal Component Analysis (PCA).
PCA is a dimensionality reduction technique that transforms high-
dimensional data (in this case, algorithm performances across 210
APS diagrams) into a lower-dimensional space while preserving as
much variance (information) as possible. Each point in the plot rep-
resents a dataset, positioned based on how algorithms perform on
it.The horizontal axis (Component 1) explains 86.75% of the variance
in the data, and the vertical axis (Component 2) explains another
12.31%. Together, they give a good overview of how datasets relate
to each other in terms of algorithm performance. Clusters on the left
side (with no labels) indicate datasets on which algorithms behave
similarly, suggesting low diversity in performance. This includes
many tightly grouped colored dots. The most diverse datasets were
highlighted —those that are far from the main cluster—by labeling
them. These include: disneylandreviews, ryanairreviews, iphone
and airlinesreviews. These datasets are farther from the cluster,
which means that algorithms behave differently on them compared
to the majority. This diversity is what makes them interesting
and valuable for further analysis. The axes don’t represent actual
performance (e.g., accuracy or F1 score), but rather patterns of
performance variation across datasets. So being in the top-right
corner doesn’t mean a dataset leads to high performance — just
that it’s performance behavior is distinct. This PCA supports the
idea that testing on a few diverse datasets may be enough to in-
fer an algorithm’s general behavior, as it shows that while many
datasets cluster together (suggesting redundancy), a few datasets
behave quite differently with respect to algorithm performance. By
focusing on these diverse datasets, we can maximize the informa-
tion gain when evaluating new algorithms, aligning with the core
assumption of the original study.

Figure 5: Principle Component Analysis(PCA)

Discussion

The use of Algorithm Performance Space (APS) analysis pro-
vided a principled framework for identifying which datasets should
be prioritized when evaluating algorithm performance. Specifically,
it enabled us to distinguish datasets that exhibit high diversity in
algorithm behavior—those which are likely to be more informa-
tive and discriminative during evaluation. Rather than selecting
datasets arbitrarily or relying solely on popularity or historical
usage (e.g., frequently cited or widely adopted benchmarks), APS
offers a data-driven rationale for selection. Popularity alone does
not necessarily imply that a dataset is representative or suitable for
robust algorithm comparison. In fact, selecting datasets without
justifiable reasoning can lead to biased or incomplete evaluations.

This is not to suggest that random selection of datasets will
always invariably produce flawed evaluations. In some cases, ran-
domly chosen datasets may still yield useful insights, particularly
if the algorithm is highly consistent in its performance. However,
APS presents a more reliable and systematic alternative by allowing
researchers to visualize and quantify performance patterns across
datasets. This increases confidence that the selected datasets will
meaningfully differentiate algorithm capabilities.

Nevertheless, certain experimental variables remain that could
potentially affect the generalizability of our results. For instance,
one may ask whether similar patterns in APS would emerge if
a different evaluation metric were used—such as switching from
NDCG to MAP or RMSE. Likewise, it is worth questioning whether
variations in other experimental parameters, such as model archi-
tecture, hyperparameter settings, or training regimes (e.g., number
of epochs), would lead to significant changes in the resulting APS
structure. These open questions suggest avenues for further inves-
tigation, particularly to test the robustness and reproducibility of
insights derived from APS-guided evaluation strategies.

4 LIMITATIONS
All parameters and metrics used in the original paper match those
used in this reproduction, except for the parameter core, in this
experiment, a 1-core filter was used instead of 5-core. Algorithms
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and datasets are also different than the ones used in the original
paper.
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