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ABSTRACT
This paper presents a reproduction of the e-fold cross-validation
method proposed by Mahlich et al., which aims to reduce energy
and resource costs by terminating cross-validation early once per-
formance estimates stabilize. Using the original implementation
and publicly available datasets from scikit-learn, we replicated their
experimental setup and extended it with several parameter modifi-
cations to assess robustness and generalization. Our results confirm
original findings: e-fold cross-validation achieves fold reduction,
completing on average after 5.88 out of 10 folds, saving approxi-
mately 40% of resources. In 95.77% of all algorithm-dataset com-
binations, the performance estimates fell within a 95% confidence
interval of a full 10-fold cross-validation. Performance differences
remained low, with an average deviation of less than 2% for clas-
sification and less than 3% for regression. We further investigated
the effects of modifying key parameters such as the maximum fold
(𝑒𝑚𝑎𝑥 ) and the stability counter. The proposed method is robust
under default settings, but sensitive to specific changes.
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1 INTRODUCTION
1.1 Background
A well-established method for model evaluation and hyperparam-
eter optimization in machine learning and related fields is k-fold
cross-validation [5, 7]. In contrast to a simple hold-out validation,
where the entire dataset is split once into a training/validation split,
k-fold cross-validation partitions the dataset into k equal-sized folds.
This kind of split ensures that each instance of the dataset is used
both for training and evaluating. With k-fold cross-validation the
performance of the model can be observed on the split data and
the difference between bias and variance can be better understood
[5]. The model is trained and validated k times, each time using
a different fold as the validation set and the remaining folds for
training. As a result of how the model is trained, it is supposed to
improve performance compared to a single train/validation split
[5, 6].

1.2 Research Problem
Although k-fold cross-validation offers its advantages in the ro-
bustness and supports better generalization, it comes also with
its disadvantages: Since the model is trained k times, it requires k
times more computational time, k more resources and k time more
costs and energy consumption [7]. This also leads to increased CO2
emissions, because the energy required for these additional com-
putational time leads to the k times more CO2 emissions. Another
problem is that there is no optimal value for k [3, 7, 10]. The k value

remains static across all datasets and algorithm in an experiment
and while there is no optimal value there is a generally considered
optimal, in literature and by most researchers, value between 5
and 10 [5, 6, 9]. The static value has the risk that the chosen value
for k was either chosen to small, so that the model performance
metric is not optimal, or it was chosen to large, so that the model
performance metric is close to optimal but consumes more than
needed resources.

1.3 Original Work
The concept of e-fold cross-validationwas first proposed as a general
idea in a preprint on OSF [4]. However, it was first implemented
and evaluated in practice by Mahlich et al.[8], who applied the
method systematically to classification and regression tasks. Fur-
thermore, Baumgart et al.[1] also adapted the idea for recommender
system evaluation. In the following, we focus on the implementa-
tion and evaluation by Mahlich et al., as their work provides the
most comprehensive analysis.

Mahlich et al.[8] introduce e-fold cross-validation, a dynamic al-
ternative to the traditional k-fold cross-validation. The key idea is to
dynamically adjust the number of folds based on the performance
stability, rather than using a static value of k in all evaluations.
The motivation behind this approach is the reduce the computa-
tional time, resource usage and CO2 emissions that come with the
execution of all k-fold runs in an experiment.

The proposed method uses a stopping criteria based on the stan-
dard deviation of the performance scores of each fold. After every
fold the algorithm checks whether the standard deviation has de-
creased or remained stable. If this happens in two consecutive
iterations the evaluation process is stopped early. The process has
two hyperparameter: 𝑒𝑚𝑎𝑥 the maximum number of folds (here
set to 10) and a stability counter limit (here set to 2). The stability
counter ensures that the evaluation is not stopped too early but
can still finish before reaching 10 folds.

To evaluate their approach, the authors conducted the experi-
ments on 15 datasets (10 classification and 5 regression) available
from the scikit-learn library, OpenML and kaggle. The classifica-
tion datasets cover both binary and multi-class scenarios. Examples
include the Mushroom, Diabetes Prediction and Iris datasets. For
the regression datasets like the California Housing and CPU Small
were used. In total 10 different machine learning algorithm were
used, such as examples like Logistic Regression, Decision Trees,
K-Nearest Neighbors, which all come from the scikit-learn library.
The experiment were repeated 100 times for each dataset-algorithm
combination.

For the classification problems, the authors used the F1-Score as
the primary performance metric and as for the multi-class datasets
the weighted variant. For regression Mean Absolute Error (MAE)
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was used. The authors did not perform any hyperparameter opti-
mization as the focus was on evaluating of their proposed method.
The same goes for the algorithm as they were used in their default
settings.

The results show that e-fold cross-validation terminated early
in most cases, saving on average 4.33 folds per run which, if a
fold counts as 10% resources, would be a reduction of roughly 40%.
In 96% of all test runs the performance estimates obtained with
the proposed method remained within the 95% confidence interval
of the standard 10-fold results. For the binary classification the
performance difference was typically below 1%, with outliers up
to 5%, while for the multi-class classification and the regression
typically below 2%, with outliers up to 16% for the multi-class
classification and up to 12% for regression.

1.4 Research Goal
The goal of this work is to reproduce and evaluate the e-fold cross-
validation method proposed by Mahlich et al. [8]. We aim to inves-
tigate whether the method can indeed reduce the number of folds
needed and the resulting computational time and CO2 emissions,
without compromising model performance.

2 METHODOLOGY
In this section we describe the steps taken to reproduce the e-fold
cross-validation approach proposed byMahlich et al. [8].We outline
the replication of the original code, our experimental setup, which
evaluation metrics were used and how our methology differs from
the original study.

2.1 Replication
To ensure a correct understanding of the e-fold cross-validation
approach, we began by reproducing the original results using the
official implementation provided by Mahlich et al. [8]. The goal of
this step was to verify that the method’s stopping criterion and
evaluation logic were implemented as described by the paper.

We executed the provided example script without any modifi-
cation. The script include runs for a single classification dataset
and compare the e-fold performance against the standard 10-fold
cross-validation.

This replication step also helped us understand how the perfor-
mance metrics were tracked, how the stopping condition based on
the standard deviation was implemented and how the confidence
intervals were computed. Based on this understanding, we adapted
the code for our own experimental setup in the next steps.

Classification Algorithm

Algorithm Name Source

AdaBoost scikit-learn
Decision Tree Classifier scikit-learn
Gaussian Naive Bayes scikit-learn
K-Nearest Neighbors scikit-learn
Logistic Regression scikit-learn

Random Tree Classifier scikit-learn
Support Vector Classification scikit-learn

MLP Classifier scikit-learn

Regression Algorithm

Decision Tree Regressor scikit-learn
K-Nearest Neighbors Regressor scikit-learn

Lasso scikit-learn
Linear Regression scikit-learn

Ridge scikit-learn
Random Forest Regressor scikit-learn
Support Vector Regression scikit-learn

MLP Regressor scikit-learn
Table 2: Supplementary information for all algorithms

2.2 Experimental Setup

Category Component

CPU AMD Ryzen 5 5600X (6 cores, 3.70GHz)
GPU AMD Radeon RX 6650 XT
RAM 16GB DDR4
OS Windows 10

Python 3.12.4
Libraries scikit-learn, NumPy, SciPy, pandas, matplotlib

Table 1: Hardware specification

For the classification datasets we used: Breast cancer Wisconsin
dataset, Iris plants dataset, Optical recognition of handwritten digits
dataset and Wine recognition data. As for the regression dataset we
used: fetch California housing and Diabetes dataset. All datasets
were accessed via the scikit-learn library and performed without
modification.

Table 2 shows the algorithms used for our experimental setup.
All algorithms were applied with their default hyperparameter
settings, as in the original study, to be able to compare the results.

All experiments were performed on a single local machine. The
hardware specifications are listed in table 1. The code for our ex-
periments are available on GitHub [11].

Overall we were able to reproduce the core results reported
by Mahlich et al. The e-fold cross-validation method successfully
stopped in most runs, typically after 4-7 folds. The observed per-
formance metrics remained within the 95% confidence intervals
of the standard 10-fold cross-validation, confirming the stability
and validity of the method. Although minor differences in absolute
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scores occurred possibly due to differences in dataset splits or li-
brary versions, the overall behavior of the approach matched the
description in the original paper. Therefore we can conclude that
the replication was successful.

2.3 Evaluation Metrics
In our evaluation, we primarily measure whether early stopping
via the e-fold criterion produced comparable results to the full 10-
fold cross-validation. The following metrics were recorded for each
combination of algorithm and dataset across 100 randomized runs:

• F1-Score: Used for binary classification performancemetrix
• weighted F1-Score: Used for multi-class classification per-

formance metric
• Mean Absolute Error (MAE): Used for regression perfor-

mance metric
• stopping fold (e): Each run we recorded the fold at which

the early-stopping condition was triggered
• Relative Performance Difference: When an early stop-

ping occured before 𝑘 = 10, we calculated the percentage
difference between e-fold and full 10-fold:

Difference =
|𝑁10 − 𝑁𝑒 |

𝑁𝑘10
× 100

This allowed us to see the difference between early stopping
and accuracy

2.4 Differences from Original Study
In our reproduction study, we introduced several modifications
to the original experimental setup to explore the robustness and
applicability of the e-fold cross-validation.

Specifically we adjusted the number of folds k from 10 to 5 to
evaluate the method under a different cross-validation. In another
experiment the stability criterion counter was increased from 2 to 3
consecutive folds to require a stronger stability signal before stop-
ping. To see the reliability of the results we increased the number
of independent runs from 100 to 250 in another experiment.

We also tested the original implementation on 6 new algorithm:
For classification: Random Tree Classifier, Support Vector Clas-
sification and MLP Classifier. As for regression: Random Forest
Regressor, Support Vector Regression and MLP Regressor.

3 RESULTS & DISCUSSION
This section presents the results of our reproduction and analyzes
the impact of our modifications to the original setup. We focus
on the fold reduction, confidence intervals and the performance
difference between the proposed e-fold cross-validation method
and the 10-fold cross-validation and our modifications.

3.1 Fold Reduction
Through our experiments, without doing any modifications, e-fold
cross-validation on average completed after 5.88 folds. The exact
values of all algorithm datasets combination can be seen in table 3.
That means that in this experiment e-fold cross-validation saved
4.12 folds on average compared to the full 10-fold cross-validation.
If we value a single fold as 10% resources that means e-fold cross-
validation saves about 40% of resources.

Figure 1: Distribution of early stopped folds

In figure 1 we see the distribution when the proposed method
stopped early. The x-axis shows the number of folds where the
method could terminate, while the y-axis represents the percentage
frequency of theses values. The results show us that in about 28.63%
of the time the method terminated after 4 folds. In about 3.15% of
cases, early termination was not possible, resulting in the same
number of folds as with 10-fold cross-validation.

We then started to modify the method in different kind of ways
and were done separately. The first modification we do is to change
the amount of runs. We do this to see if its limited to 100 runs or if
its stable enough on more runs to see more outliner or performance
differences. While we performed 7500 runs of combinations this
way the outcome was comparable to the base version of the e-
fold cross-validation. This result shows us that the amount of runs
doesn’t influence the proposed method.

The second modification we do is to change the 𝑘-value to 5. We
do this to see how scalable the method is for smaller k-values. This
results in two possible stopping points: fold 4 and fold 5. If stopped
at fold 5 it results in the same number of fold when used with
5-fold cross-validation. This happened in about 44.51% of the time
with the remaining 55.49% stopping at fold 4. On average e-fold
cross-validation with 𝑒𝑚𝑎𝑥 set to 5, it completed after 4.45 folds. If
we again say that a single fold is the equivalent to 10% of resources,
we did not even save 10% of resources this way. This result shows
us that the proposed method does not work in saving resources in
a small value of k.

The last modification we do is to change the stability counter
from 2 to 3. This is intended to see how sensitive the method is to
different kind of strictness for the performance. This changes the
possible outcome of when e-fold cross-validation can terminate.
The earliest stopping fold is now 5 instead of 4. This change leads
to that, on average, the method completed after 7.27 folds. In our
calculation with 1 fold equals 10% resources, we saved less than 30%
of resources. The earliest stopping fold 5 terminated about 20.19%
of the time while 10.32% it terminated at fold 10 meaning the same
number of folds as with 10-fold cross-validation.
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Model Breast Cancer Iris Digits Wine Diabetes California Housing Average

Adaboost 5.85 5.90 6.06 5.89 n/a n/a 5.93
Decision Tree Classifier 5.92 6.14 6.34 5.75 n/a n/a 6.04
Guassian Naive Bays 6.14 5.65 6.20 5.47 n/a n/a 5.87
K-Nearest Neighbor 5.77 5.29 5.91 5.99 n/a n/a 5.74
Logistic Regression 5.72 5.42 5.85 5.56 n/a n/a 5.64

Random Forest Classifier 6.18 5.69 6.11 5.27 n/a n/a 5.81
Support Vector Classification 5.64 5.36 5.85 5.85 n/a n/a 5.68

MLP Classifier 5.77 5.14 5.98 5.58 n/a n/a 5.62
Decision Tree Regressor n/a n/a n/a n/a 5.96 6.09 6.03

K-Nearest Neighbor Regressor n/a n/a n/a n/a 5.99 6.01 6.00
Lasso n/a n/a n/a n/a 5.76 5.99 5.88

Linear Regression n/a n/a n/a n/a 6.23 6.11 6.17
Ridge Regression n/a n/a n/a n/a 5.82 6.11 5.97

Random Forest Regressor n/a n/a n/a n/a 6.03 5.87 5.95
Support Vector Regression n/a n/a n/a n/a 6.02 6.18 6.10

MLP Regressor n/a n/a n/a n/a 6.03 5.63 5.83
Average 5.87 5.57 6.04 5.67 5.98 6.00 5.88

Table 3: Average number of folds where e-fold cross-validation stopped

Configuration Average Folds

Original Paper 5.67
Our Reproduction 5.88

Increased Runs (250) 5.85
𝑒𝑚𝑎𝑥 = 5 4.45

Stability Counter = 3 7.27
Table 4: Average number of folds for different configurations

Overall the original method shows consistent and meaningful
fold reduction across a range of datasets and algorithms. How-
ever, our modifications in table 4 demonstrate that its efficiency
depends on the chosen hyperparameter such as 𝑒𝑚𝑎𝑥 and the sta-
bility counter. For practical use the selection of these parameters is
necessary to ensure optimal resource savings without sacrificing
evaluation quality.

3.2 Confidence Interval
While fold reduction demonstrates the potential efficiency gains of
e-fold cross-validation, it is equally important to examine whether
this comes at the cost of result reliability. Therefore, we now turn
to an analysis of confidence intervals to assess the robustness of
the method.

Without any modifications in our reproduction 95.77% of all
algorithm-dataset combination the results were within a 95% confi-
dence interval calculated using the t-distribution. This results in a
total of 48 combination performing 100 runs for each algorithm on
each dataset. The percentage of 95.77% was determined by analyz-
ing the results of all iterations, with 4597 of 4800 falling within the
confidence interval.
Figure 2 shows the distribution of number of iterations that fell
within the confidence interval across all 48 different combinations.
The x-axis shows the percentages of iterations that fall within the

Figure 2: Distribution of number of iterations within the 95%
confidence interval

confidence interval, while the y-axis represents the percentage
frequency of these values.

A accumulation is observed between 95% and 99% of all iterations.
This shows that the method has a certain accuracy and reliability.

As seen in the fold reduction, increasing the amount of runs
doesn’t change much in the performance of e-fold cross-validation.
The same can be seen in the amount of iterations, 7198 of 7500,
that fall within the confidence interval with 250 runs. The percent-
age of 95.97% confirms the accuracy and reliability of the original
implementation.

If we now change the 𝑒𝑚𝑎𝑥 parameter to 5, we see that now
only 1996 iterations of 3000 fall within the confidence interval.
This results to a percentage value of 66.53%. This fall in accuracy
reinforces that the 𝑒𝑚𝑎𝑥 hyperparameter has to be chosen carefully.



e-fold cross-validation reproduction

Figure 3: Percentage difference of performance metric be-
tween e-fold and 10-fold cross-validation

While changing 𝑒𝑚𝑎𝑥 shows a drastic fall in accuracy, we don’t
see the same drastic fall when changing the stability counter to 3.
We see that 2708 of 3000 iterations fall now within the confidence
interval, resulting in 90.27%.

Overall, the original method demonstrates strong accuracy and
reliability. However changing the parameter does have a strong im-
pact of the accuracy. Especially when changing the 𝑒𝑚𝑎𝑥 parameter
the accuracy falls dramatically.

3.3 Performance Difference
After evaluating the potential efficiency and the statistical reliability
of the method, we now tun to the performance metrics to assess
the practical impact of e-fold cross-validation. We will see if there
is a difference between e-fold cross-validation and 10-fold cross-
validation in terms of performance.

We differentiate between the performance between classifica-
tion and regression datasets. Results where e-fold cross-validation
terminated with e = 10 are not included in the calculation, as the
method does not terminate early at e = 10 and thus have the same
score as 10-fold cross-validation.

The absolute percentage difference in performance metrics be-
tween e-fold cross-validation and 10-fold cross-validation remains
on average low. For binary classification datasets it averaged less
than 1% and for the multi-class classification dataset it averaged
less than 2%. Regression Datasets averaged less than 3%. As seen
in figure 3 there are outliers for all datasets. Binary classification
datasets has outliers of up to 6% with multi-class dataset of up to
16%. Regression datasets have outliers of up to 13%.

We now investigate how the performance changes when modi-
fying the parameters of the method. As we already seen with the

fold reduction and the confidence interval changing the amount of
runs doesn’t influence the performance of the method. If we look
at the averages after 250 runs we see similar results to the 100 runs.

While we have less information for k = 5, as we have fewer
terminated runs, we can see that the performance difference to
10-fold cross-validation is still similar value wise. Meaning even if
we change the 𝑒𝑚𝑎𝑥 parameter, when we have a stopping fold, the
performance difference to the 10-fold cross-validation is the same.

For the increase in the stability counter, we see on average less
difference in performance. The binary and multi-class classification
datasets are both less than 1% and the regression datasets are now
less than 2% differences on average.

Overall, the results show that e-fold cross-validation achieves
comparable performance to standard 10-fold cross-validation.While
there are still some outlier and the comparison was only done, when
the method terminated before e = 10, it shows its robustness. Our
modifications further confirm this robustness but with a low 𝑒𝑚𝑎𝑥

the method can occasionally become less reliable as half of the time
there is no early stopped fold available.

3.4 Discussion
Our reproduction confirms that the default configuration of e-fold
cross-validation is a robust and efficient method for reducing re-
sources without significantly compromising performance or relia-
bility.

The method also proved to be stable across different random
seeds and datasets variations, and increasing the amount of runs
had no significant impact on the results. However our experiments
also show that the performance and reliability of themethod depend
on the correct choice of hyperparameters. Reducing the maximum
number of folds (𝑒𝑚𝑎𝑥 ) led to a noticeable drop in confidence inter-
val coverage highlighting a trade-off between early stopping and
robustness. While increasing the stability counter made the method
more conservative and slightly improved result consistency.

Overall e-fold cross-validation has an interesting concept to
try to save resources in comparison to 10-fold cross-validation.
Nevertheless careful tuning of the method’s parameters is necessary
to ensure the desired balance between efficiency and accuracy.
While our experiments were done on a relatively small limited size,
we believe that the method may have limited scalability across
different configurations.

4 LIMITATIONS
While our reproduction aims to faithfully reproduce and extend
the e-fold cross-validation approach, there are several limitations
worth noting:

• Dataset Selection: We did not use all datasets from the
original study as some could not be faithfully located.

• Model Hyperparameter Tuning: We applied default hy-
perparameter settings for all algorithms, in line with the
original study. We did not perform any hyperparameter op-
timization, which may limit the best performance results.

• Hardware Constraints: All experiments were conducted
on a single local machine. Thus we did not investigate how
much difference the impact of different configurations has.
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• Energy Consumption: We did not exactly measure how
much energy the system used overall during the experi-
ments.
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