
 

Flee-Mail | Mass Email Detector 

E-Business Project - Team 2  

Background & Problem Description 

Every day, you’re bombarded with emails from people who want a piece of you and 

your time. But are they genuine? Maybe you’re a college professor, the founder of a 

start-up or a company recruiter. Wouldn’t it be great if you could tell which emails 

you receive are genuine, and which ones have been sent to hundreds of other 

contacts, and not just you personally? 

 

This is a common problem faced by many around the globe. Typically most modern 

email clients are good at filtering spam and unwanted marketing emails, however 

they often lack the capability of discerning which emails are sent with genuine intent. 

It’s very difficult and generally not always possible to detect whether an email has 

been sent to multiple others from only reading its email body. Hence, a tool is 

required to allow users to ‘test’ an email for its genuineness. 

The Goal 

The goal of the project was to provide people with a simple and easy solution to 

detect mass emails and to determine if the sender of an email has sent the same 

email to others. 

The Solution 

The Non-Technical Explanation 

Our product Flee-Mail, is a simple yet beautiful tool that fits in snugly to your Gmail 

inbox. Simply install our add-on, and upon receiving an email, click on the icon to 

validate whether the email is genuine or not. That’s it! On a surface level, it works by 

checking the body of the currently opened email with a database of other emails sent 

from the same sender. If the email body matches the content of any other email to a 

certain threshold, it will classify it as a mass email. 

 

The basis of our project requires many users to have this tool installed in their email 

client. However, with enough users, it would become an extremely effective tool in 



filtering out mass email messages. For example, if it became widely enough used by 

professors across universities, it would be effortless to detect students who send out 

mass emails looking for PhD or Masters opportunities without having a genuine 

interest in the college or professor.  

 

We opted for a manual check approach of mass emails. This is because not every 

single email that arrives in your inbox needs to be checked. The tool should be used 

when the user is suspicious of an email or if the email is of a nature in which it could 

be a mass email – e.g. PhD applications, property viewing requests, etc. If our add-

on checked automatically for each email, it would result in a LOT of junk data. For 

example, simple emails sent out to all the employees in a workplace by management 

would be flagged as a mass email when opened, which is not what we want. 

How to install our tool: 

Please note, the add-on is in development stage and not fully published. Only emails 

under the tcd.ie domain can install the plugin for now.  

https://practical-roentgen-6e9cc1.netlify.com/howtocheck 

 

Video Demonstration: 

https://youtu.be/AbEWH2nc4wE 

https://practical-roentgen-6e9cc1.netlify.com/howtocheck
https://youtu.be/AbEWH2nc4wE


How to use our tool: 

Step 1: open an email in your Gmail inbox.

 

Here’s an email from a student seeking an internship opportunity. 

 

 

 

 

Step 2: Select the Flee-Mail icon in the sidebar to activate the tool. It will 

automatically check the selected email and interact with our server, returning a result 

immediately. 



 

Here we can see that this email appears genuine, and our tool has reported that it is 

not a mass email. 

Here’s an example of the tool being used with a mass email which has been sent 

multiple times to different receivers. 

 



 

This email is a substantial length. It’s unlikely that this student typed up this entire 

email solely for this professor. Let’s check it with our tool: 

 

As you can probably guess, our tool has reported it as a mass email. It has been 

received by other professors who have also checked it with our tool, registering it on 

our system. 

 

 



The Solution 

The Technical Explanation 

Frontend  

The frontend of this Gmail add-on is built using Google App Suite Developer. We 

chose this because after doing research, it appears to be the best and most 

straightforward way to integrate an add-on with Gmail. It also allows us to download 

the add-on to our individual emails without having to publish it.  

 

The programming is completed in Google App Scripts. Google App Scripts operates 

similar to Google Drive where the project can be shared with multiple users and 

multiple people can edit and make changes to it. It uses a Google scripting language 

which is very similar to JavaScript. Google App Suite Developer provides references, 

guides and samples of features and functions of add-ons which is hugely beneficial 

as there are little resources elsewhere online about developing Gmail add-ons. 

 

To integrate the frontend and the backend , the frontend sends a fetch request to our 

database hosted on Heroku to retrieve the information on the email. We check: 

 

  1) The number of emails that are compared  

  2) The number of similar emails (matches) found 

 

The number of emails that are compared determines the confidence level of the 

result, i.e if only 1-5 emails were checked, the confidence level is moderate. If the 

number of matches found are 1 or more, we deem the email to be a mass email, and 

display the result. The result displayed is a simple green tick or red cross, with the 

appropriate message. We use icons and small messages to make the response of 

the add-on as clear and concise as possible to the user. As Google App Script does 

not accommodate the integration of HTML, the best way to provide a stylised and 

attractive display was to display the results as images, rather than text. We also 

display an error message, in case the server is under maintenance or has crashed. 

 

The UI of the add-on consists of buttons and widgets. The first button reveals 

whether or not the email is a mass email. The second button brings the user to the 

static website for our add-on. We used the bootstrap 4 CSS framework and some 

basic HTML. On the website, we explain our understanding of a 'mass email', how 

we calculated whether or not your email is a mass email, and some information on 

how to install the add-on. The aim of this website is to act as a ‘landing page’ for 

people who would like to use and learn about our tool. 



Backend & Comparison Method 

Comparing Emails 

One major problem we had to solve was how to render our understanding of the 
same email in terms that could be computed algorithmically. It is easy to simply 
compare two texts for strict equality — a problem that could easily be solved by 
calculating some hash from both texts and comparing the two hashes, or, relying on 
an even easier approach, by simply walking through the two strings and seeing if we 
encounter any differing characters before we reach the end of both strings. It is 
harder, however, to assess if two emails that aren’t exactly the same still contain 
pretty much the same content or not. The same problem is also faced in two other 
areas: Search Engines and Spell Checking. 

The goal of Search Engines is to find documents that contain the same content a 
user entered as a query, but they’re obviously not meant to just echo the search 
query back to the user. Rather, Search Engines usually convert the query into a bag-
of-words model that, given a vocabulary, can be rendered as a vector. This vector is 
then compared to vectors that have been created for the documents in order to 
calculate a similarity metric that ultimately allows us to return the most similar 
documents. 

Similarly, Spell Checkers tend to go beyond simply comparing words against some 
dictionary and pointing out words that weren’t found. While this is certainly a part of 
their functionality, they usually also try to find existing words that are similar to what 
users entered and make suggestions as to what they might have meant to spell. 
Spell Checkers thus rely on some metric of similar words. One approach to 
calculating this similarity is the Levenshtein Distance Algorithm, which provides an 
automated way of finding the minimum number of characters that need to be 
changed to convert one word — or any sort of string — into another. 

While both vector space models and Levenshtein Distance would allow us to assess 
the similarity of two emails, rather than just their complete equality, the Levenshtein 
Distance Algorithm has a particular advantage. In order to obtain a vector space 
model, emails would first need to be converted into bag-of-words models. This, 
however, would mean that we discard all, or at least most1 information about the 
ordering of words. Since our goal is to assess if one email could be a slightly 
modified version of another one, rather than to assess if two emails contain similar 
vocabulary, we concluded that Levenshtein Distance would be a better fit for our 
application. 

The Levenshtein Distance Algorithm allows specifying the costs of inserting, deleting 
and modifying some element. We decided to use a fairly standard configuration, 
where we set both the cost of insertion and deletion to 1 and the cost of modification 
to 2, since replacing an element with another one can be considered equivalent to 
deleting the first element and inserting the second. 

Furthermore, we decided to calculate Levenshtein Distance on lists of tokens,2 rather 
than using the more common approach of calculating it on strings (lists of 
characters). Using some sort of tokenisation (i. e. splitting text into tokens) made 
sense in our case, since intuitively, it makes more sense to calculate the number of 
differing words rather than the number of differing characters.3 Since we wanted to 



keep our tokenising algorithm as slim and straightforward as possible, we decided to 
simply use a regular expression to insert a space in front of any number of known 
punctuation marks and to use another one to split the text of an email into different 
parts wherever a continuous region of whitespace occurs.4 

In order to assess the difference between two emails, we first calculate the 
Levenshtein Distance between them and divide the result by 2, which is the cost we 
set for the replace operation. We then divide this absolute difference by the length of 
the email in question5 to get the relative difference. Finally, we subtract this relative 
difference from 1 to get a measure of overlap between two emails. We thus arrive at 
the following formula for calculating the overlap between an email  and another 

email :6 

 

Given this measure of overlap, deciding whether two emails contain pretty much the 
same content or not comes down to finding a threshold above which they could be 
considered the same and below which they could be considered different.7 Deciding 
which threshold to use obviously requires tweaking the value based on some manual 
assessment o how well the system performs on a set of example emails. While we 
didn’t do any extensive testing, preliminary experiments suggest that 90 % might be 
a good threshold value, which is why we decided to use this value for now. 

Backend 

As explained in the previous section, we decided to use the Levenshtein Distance 
Algorithm to measure the overlap between emails, which serves as the basis for 
deciding whether we consider other emails in our database to be the same as some 
email in question or not. This information can then be aggregated to inform users 
about how many other people have received the same email as the one that is being 
checked. 



 

Figure 1: Diagram showing the architecture of our application 

For doing these calculations, the frontend transfers an email’s sender, receiver, 
timestamp and text body to the server,8 where it is processed. The backend 
processing is outlined in figure 1.9 First, the backend stores the email in an SQL 
database, using the combination of sender, receiver and timestamp as the primary 
key. By using this information as the primary key, we also ensure the de-duplication 
of entries. De-duplication is important, since the same user might query our backend 
with the same email multiple times simply by clicking the add-on’s icon on multiple 
occasions. Obviously, though, we would not want to consider previous queries by the 
same user as evidence that some email is Mass Email. After storing the email in 
question, the backend executes our comparison algorithm, which retrieves the email 
( ) as well as any other email which has the same sender but a different receiver ( 

) from the database. The comparison algorithm goes on to compare the email in 

question to any other email ( ) and accumulates a count of how many of these 
other emails are the same as the email in question, using the similarity metric 
described above. Finally, the comparison algorithm returns the number of emails that 
matched the email in question to the frontend. 

If our database doesn’t contain any other emails from the same sender, however, we 
can’t really tell if the email in question is Mass Email or not, since we have no data to 



compare it to. If, on the other hand, it contains lots of emails from the same sender, 
we can be fairly certain that our results are informative. Therefore, the comparison 
algorithm also returns the total number of comparisons that have been executed to 
the frontend, where this information is used to display a confidence score. 

Limitations & Outlook 

In retrospect, we were pleased with many aspects of our development process. 

Developing our backend with Node.js, Express.js and MySQL allowed us to get an 

early prototype up and working quite quickly. We connected our Github repo to a 

server hosted by Heroku with automatic deployment once a commit was made, 

which was extremely helpful when testing our backend with the Gmail add-on. 

Using the Google Apps Script technology was far from convenient. It’s extremely 

limited, has poor online support and very little resources on online forums. Their 

documentation wasn’t straight forward, and it took quite a lot of effort to even create 

a button that opens a web page when clicked. Our add-on is limited in the fact that it 

can only read and check email messages with plain body text. Multimedia and HTML 

formatted emails don’t work with our plugin.  

 

The backend is currently still in a very early stage of development and could certainly 

still be improved in terms of performance and robustness. We do, for instance, 

calculate the whole Levenshtein Distance between any two emails we compare, 

although we actually just need it to check whether it is below a certain threshold or 

not. The performance of the Levenshtein Distance Algorithm could therefore be 

improved by skipping those parts of the calculation that are already known to lead to 

results that will exceed the threshold.  

 

Furthermore, we are currently using a monolithic architecture for our application. If 

we were to scale it, it would probably be a good idea to split the Comparison 

Algorithm out into a microservice that can be scaled individually. Since we already 

separated concerns when designing our architecture, however, this should be a 

rather easy and straightforward thing to do. Additionally, further experiments are 

needed to find the optimal threshold value for deciding whether emails are pretty 

much the same or not. 

In conclusion, we were delighted with our end product and believe that it sufficiently 
solves the problem of mass email detection. We enjoyed working together as a team 
and learning from each other’s skillsets. We hope this tool is useful to you and we 
are open to critical feedback on how to improve our work. 

 

 

Footnotes 

 



1. It would certainly be possible to use ngrams of various sizes, rather than just the 
words themselves. As we increase the ngram size, however, we move closer to 
simply comparing string equality, and the smaller the ngrams are, the less 

information about word order is preserved.      

2. Token is pretty much a technical term for saying word. Since there is lots of 
discussion in linguistics about what exactly a word is, however, it is common to 
use the term token to denote whatever small parts a program happens to split a 

text into.      

3. If we just considered characters, the Levenshtein Distance between the words 
“house” and “mouse” would be 2, since one just needs to remove one character 
and add another one. The difference between “house” and “mansion”, on the 
other hand, would be 10, since one has to remove 4 characters (“h”, “o”, “u” and 
“e”) and add 6 new ones (“m”, “a”, “n”, “i”, “o” and “n”) — actually, one might also 
remove “h”, “u”, “s” and “e” and add “m”, “a”, “n”, “s”, “i” and “n”, but that would 
still be 4 deletions and 6 insertions, so it wouldn’t make a difference. While this 
sort of reasoning is great when dealing with spelling errors, it doesn’t make that 
much sense for comparing the content of emails. As far as we are concerned, 
replacing “house” with “mouse” changes some given text just as much as 
replacing it with “mansion”. One might even argue that “mansion” is supposed to 
be closer to “house” than “mouse” is, but this sort of argument is probably more 
of an exercise in philosophy than something that could actually benefit our 

implementation.      

4. While one might argue that a more advanced approach could yield results that 
are more in line with linguistic theories, we concluded that this simple approach 
should be able to serve as a solid basis for our program. Furthermore, we 
strongly suspect that using more accurate tokenisation techniques would have 

no impact on overall performance.      

5. We could also have used the length of the other email or the average of the two. 
We chose to simply use the length of the email in question, though, since the 
length of the other email changes for every comparison, which makes the 
implementation slightly less straightforward. It also makes sense intuitively to set 

the email in question to be the scale things are compared to.      

6. As explained above, we decided to tokenise emails before processing them. 

Both  and  are thus calculated on lists of tokens, 

rather than on strings.     

7. In fact, given some fixed threshold, the above formula can be solved for 

 in order to express the threshold in terms of the 
maximum Levenshtein Distance we would still consider to be indicating that two 
emails are pretty much the same. We consider emails to be the same if the 
overlap is above our threshold. In mathematical terms, this can be rendered as: 

8.  



9. Since only the output of  depends on , it makes sense to 
convert this formula into a form where one side of the comparison can be 
calculated only once every time an email is checked against our database: 

10.  

11. We thus implemented the comparison by calculating the right hand side of the 
last equation once for every incoming email and checking if the Levenshtein 
Distance calculated for any pair of emails is less than or equal to the resulting 

value.      

12. Transferring and storing all this data obviously raises certain security concerns. 
We addressed these by ensuring that the communications between frontend 
and backend are properly encrypted and that the database is properly secured, 
so that only our backend can access it. We also provide users with detailed 
explanations of what data is transferred to our server and of how it is used, so 
that they can make an informed decision about which emails they want to check 

with our service.      

13. We used javascript and Node.js to implement the backend and rely on Heroku 
as our hosting solution, which provides both a basic Node.js installation and an 
SQL database for us to use. For calculating the Levenshtein Distance, we used 
the edit-distance-js library. Since that library used to operate on strings, rather 
than on lists of arbitrary elements, however, we had to directly include a 
modified fork of it in our code base. Our changes have since been merged into 
the upstream library, so we should be able to remove that fork and return to 

using the external library once it reaches its next release.      

 

 

https://nodejs.org/
https://www.heroku.com/
https://github.com/schulzch/edit-distance-js

