

Group 1
One-Time Two-Factor

Authentication

Amy Pierce – 17330305 - https://github.com/amy-pierce

Jamison Engels - 17300599 - https://github.com/engelsj

Ciara O’Sullivan – 17321934 – https://github.com/ciaraos

Liam Collins – 17301097 - https://github.com/lpc477

CSU33BC1

Blog Post

https://github.com/amy-pierce
https://github.com/engelsj
https://github.com/ciaraos
https://github.com/lpc477

BACKGROUND AND PROBLEM

Users generally log into their online accounts with a username and a predefined password. For

the sake of convenience, many people often use the same credentials across multiple accounts.

However, this creates an extra security risk. Hackers can install malicious software on a device

such as a keystroke tracker to save these credentials. Not only does this give the hacker access

to the account currently being logged into. They can also gain access to all other accounts with

the same login information.

Two-factor authentication and one-time passwords (OTP) were introduced to combat this security

risk. Two-factor authentication works by sending a code by text or email to the user after they

enter their username and password. This code must be entered into the website to gain access

to the account. One-time password works similarly. Rather than entering the entire predefined

password, the user can request a one-time password. This will be sent to either their phone or

email. With both of these methods, the hacker must have two things in order to gain access to

the account, the user’s login details and access to their phone or email.

The problem with these methods is that they don’t prevent the hacker from being able to phish

the data. While the hacker may not have access to accounts protected by two-factor

authentication, they can use the phished data on any other account with the same credentials. In

the event of two-factor authentication being deactivated, the hacker can gain access to the

account. One-time password may stop hackers from phishing the predefined password, but it

removes the need to know some private information (the password). If the hacker gains access

to the user’s phone, then they will have complete access to their account.

Reference to the original problem statement can be found at:

https://joeranbeel.atlassian.net/browse/STUD-20 (requires authentication)

GOAL

Our goal was to develop a program where a user can login without entering their full password.

Instead, the user enters only part of their password, for example, they could be asked to enter

the 3rd, 6th, and 7th indexes of their predefined password. This method is more secure as even

if a hacker phished this information, they will not know the entire password. They will also be

sent an OTP by text. This must be entered into the website and verified in order to gain access

to the account. This provides additional security by checking if the user has knowledge beyond

access to the phone, and all the benefits of two-factor authentication.

 NON-TECHNICAL SOLUTION

Our project allows users to choose between a “secure” and “unsecure” login. The unsecure page

is just the normal login process with a username and password. Secure can be used for extra

security if the user does not fully trust the website. This is where the user will be asked to enter

their mobile number so they can be sent their one-time password. After the OTP is entered, the

user will be asked for random indexes of their predefined password. This provides all the

benefits of one-time two-factor authentication with the additional security of a partial password,

preventing hackers to be able to phish all the private information. The person logging into the

account must not only know the whole password to be able to enter the random indexes, they

must also have access to the account owner’s phone.

DESIGN CHOICES

We decided to change the proposed order of events for the login solution to one we felt was

more secure. Instead of having the user enter their partial password and then their OTP, our

application asks for the OTP first before asking for the partial password. We felt this was more

secure as by sending the OTP the user should get a text with the validation code and this will

alert them that someone is trying to access their account. Twilio also has a request limit to prevent

spamming. This provides an extra layer of security, as if the hacker does not guess the password

within the given limit, they will not be able to receive any more OTPs. In short, we changed up

the order of events in the login process to make hacking the account by brute force more difficult.

Another design decision we made was to integrate our own functionality into a premade react

app by GitHub user, giorgi-m, the repository can be found here:

https://github.com/giorgi-m/online-

shop?fbclid=IwAR3LIAWiNSmhDrND2gkn0J8DgDUS9wG8azRLAf46fqVd29fSMTXhUK1Ezx0.

We did this because we didn’t want to reinvent the wheel. Rather than spending time developing

a whole new, fully functioning website, we felt it was more important to spend our time on the

problem at hand. Our choice to do this was influenced by Professor Beel’s comments after our

prototype demonstration. We followed the principles of MVP (lecture notes week 1 slide 25).

FUNCTIONS

The following screenshots and their descriptions outline the functionality of our project:

UNSECURE LOGIN
When the user clicks login they are initially brought to this page, as can be seen in the following

screenshot. They are given the option to login as normal or click one of the links below to go

register or choose the extra secure login for untrusted computers.

https://github.com/giorgi-m/online-shop?fbclid=IwAR3LIAWiNSmhDrND2gkn0J8DgDUS9wG8azRLAf46fqVd29fSMTXhUK1Ezx0
https://github.com/giorgi-m/online-shop?fbclid=IwAR3LIAWiNSmhDrND2gkn0J8DgDUS9wG8azRLAf46fqVd29fSMTXhUK1Ezx0

SECURE LOGIN
If the user opts to go for secure login, they are pushed to this page where they are required

to enter just their email. They can also follow the link to find out more about secure logins.

OTP
Once the user enters their email and it is validated, an OTP is sent. They are then brought to

this page where they enter the OTP received on their mobile device.

PARTIAL PASSWORD
If the OTP is valid they are then pushed to this partial password page where they are

prompted to enter specific indexes of their password.

REGISTERED
If the user chooses to register, they are brought to this page and asked to enter their email,

password and phone number.

ALERTS
We made use of alerts to let the user know their status for the current stage of the login process:

e.g. that the OTP has been sent or login failed etc.

ERROR CASES
We accounted for error cases on login fields such as leaving a field blank or not entering a

valid email. Our application displays these errors for the user to give them a hint as to why they

could not move forward in the login process. We implemented this through a series of if

statements and a call to a function that validates the login form.

DEMO

Our project was published under the MIT license. All source code can be found within the

GitHub page:

https://github.com/engelsj/Ebusiness-Project

A live demo of our project can be found at:

https://ebusiness-project.herokuapp.com/

A video demo of our project working can be found on the following YouTube link:

https://www.youtube.com/watch?v=TT4H4aYJW3A&feature=youtu.be

TECHNICAL SOLUTION

KEY DESIGN CHOICES

Initially we started our project with the intention of a monolithic structure. As time went on, we

saw that a microservice structure would be better. We used a react app, Micronaut, Twilio,

Kubernetes, and MySQL to complete our project. The react app is written in JavaScript, CSS

and HTML. This is the front end of our project where the user can register an account or login.

We used Micronaut as the framework for our microservices. Our microservice handles

generating and verifying the partial password. It is also used to call Twilio to generate and

verify an OTP. Kubernetes is the platform we used for deployment to Google cloud so we can

have our code run off local. Finally, we used MySQL to create and query our database. The

database stores the users’ email, password and phone number.

TECHNOLOGIES USED AND LECTURE REFERENCES

React App – Front end → Week 5/6/8 – HTML, CSS, WikiMarkup, Emails

Micronaut – Microservice framework → Week 10 - Conor Gallagher Guest Lecture

Twilio – OTP Service → Week 10/11 - Web services

Kubernetes – Deployment Method → Week 2 – Entities, Servers, Connections

MySQL – Database management → Week 9/10 – Structured Data, XML, Encoding, HTTP

Heroku – Webhosting → Week 2 – Entities, Servers, Connections

SMALL FEATURES ADDED FROM LECTURE CONTENT

CSS to stylize our webpage → Week 5/6/8 – HTML, CSS, WikiMarkup, Emails

POST/GET Requests in our Microservice → Week 10/11 - Web services – Slide 21

Use of Mirconaut and Basic Naming Conventions → Week 10 – Conor Gallagher Guest

Lecture – Slide 15

Semi Structured JSON Responses from our Microservice → Week 9/10 – Structured Data,

XML, Encoding, HTTP – Slide 8

Sub Domains for Different Parts of our Website → Week 3 – Domain Names and Domain

Name System – Slide – 16

Proxy Server to Circumvent CORs Issue (Not in final Prototype) → Week 4 – Routing and

Protocols – Slide 17

https://github.com/engelsj/Ebusiness-Project
https://ebusiness-project.herokuapp.com/
https://www.youtube.com/watch?v=TT4H4aYJW3A&feature=youtu.be

OVERVIEW

ARCHITECTURE DIAGRAM

This diagram shows how our platform works in its current form. The Kubernetes, Mircoservice,

and Twillio on the right side shows the backend processes that are operating. In the ideal

scenario, the Microservice (operating on a Kubernetes cluster) would receive the field

information from the frontend, make the HTTP requests to the database, and also administer

and check the OTP passwords. This would be an incredibly powerful tool for any E-Business, as

it would give an added security buffer of the services and allow for simple implementation of

an OTP protocol.

In reality, this demo shows the functionality of the OTP administration services. All parts function

as designed, but the database is linked to the frontend. We realize that this exposes many

security risks and other issues. This iteration is not designed for public use/deployment. Our

version does show what we think is the best way to administer two-factor authentication with a

one-time password via the designed microservice system. A database hook-up would make this

deployment ready and should not be too difficult to implement. In truth it is probably better to

allow programmers to design a database to their own specifications anyway. If given more

time, we would work on a fully deployment ready version of this system, with full database

integration.

USE CASE DIAGRAM

INITIAL PROTOTYPE DIAGRAM

This was our original use case. When we presented our initial prototype, we worked from this

diagram. However, as we got further into the development process, we realised that this no

longer fit our design and we had to adjust or diagram accordingly. Our new use case better

represents the flow of our application.

FINAL PROTOTYPE DIAGRAM

USE CASE TEXTUAL DESCRIPTIONS:

Name: Register

Participating actors: New User, Database

Entry condition: User is on the correct website and enters valid details

Exit condition: User has successfully registered

Normal scenario:

1. User opens the website and clicks to register

2. User enters credentials

3. Database adds user details

Error scenario:

• User enters invalid credential and unable to register

Name: Unsecure login

Participating actors: Existing User, Micronauts

Entry condition: User is on the correct website with the correct login details

Exit condition: User has successfully logged in

Normal scenario:

1. User opens the website and clicks to login

2. User chooses unsecure login

3. User enters credentials

4. Micronauts verifies user credentials

Error scenario:

• User enters invalid details

Name: Secure login

Participating actors: Existing User, Micronauts, Twilio

Entry condition: User is on the correct website with the correct login details and access to their

mobile phone

Exit condition: User has successfully logged in

Normal scenario:

1. User opens the website and clicks to login

2. User chooses secure login

3. User enters email

4. User enters their login details

5. Micronauts verifies email

6. Twilio sends OTP

7. User enters OTP received by mobile phone

8. Twilio verifies OTP

9. Micronauts generates partial password

10. User enters partial password

11. Micronauts verifies partial password

Error scenario:

• User enters invalid email

• User enters invalid OTP

• User enters invalid partial password

ACTIVITY DIAGRAM

This activity diagram represents the happy case for our secure login. When the user has chosen

the secure login method, they will be asked to enter their email. Micronauts will call the database

to check if the email is valid. If valid, the database will then get their mobile number and use

this to send the OTP. Micronauts sends an OTP request to Twilio. Twilio sends the OTP to the user,

who will then be asked to enter it into the website. Micronauts then sends a verify OTP request

to Twilio. If a valid OTP is entered, micronaut will generate a partial password. The user will

then be asked to enter their partial password. Micronauts verifies this. Once verified, the user

will gain access to their account. Our final activity diagram remained relatively the same as the

original but had just been updated slightly with better names and functionality. We feel the

final diagram better represents the flow of our application.

FRONTEND

No one on our team really had much experience in front end development so we had to do

some research as to what would be best to build our front end. We decided to use React.js

because one of our team members had a small bit of experience using it.

WHY WE CHOOSE REACT
React is a JavaScript library used for building user interfaces. Using node, you can run your

application on local host to see the development. Another reason we picked react is that it is

easy to adapt for the likes of ios deployment. We thought would be useful as realistically the

majority of people these days use their phones for everything. Given that we were working on

login authentication it seemed like a smart move for thinking about moving forward beyond this

project. It is also really easy to use once you have node.js which is fairly easy to install on any

computer.

PARTIAL PASSWORD DESIGN

To begin with the partial password aspect of our project was part of a monolithic structure.

However, once we found our feet with the idea of using microservices we decided to migrate

the partial password aspect to a microservice of its own that could be hit from the front end.

We decided the most secure way to ask for the partial password was to ask for three random

indexes of your password. We had considered just asking for the last three characters but this

felt less secure as it would be easier to guess. We also made the design choice to not display

the tokenized password on the screen so as to make it more difficult for unauthorized users to

access your account because they would have no idea how long that password is.

PARTIAL PASSWORD PROTECTION
As a security feature we tokenized the password on any text field the user is required to enter

the private information in, so as to prevent others seeing them type in their password.

DEPLOYMENT/HOSTING
We looked into a few different hosting services for the front end such as aws,s3 and firebase

and we decided that Heroku was the best way to go about deploying our website. Heroku is

an online deployment service that allows you to host your website or application. We had

some difficulties deploying our final product due to connection errors between Heroku and

https websites.

DATABASE

When we first attempted to make a database to connect to our front end, we used MySQL and

Diango for our project to store our user’s data and their encrypted partial password. We had

a lot of trouble connecting our database to our front end and learning how to make database

calls from the microservice built on Micronaut.

Our first plan was to build an SQLite database with a Django REST API framework. The Django

framework is very powerful from a UI and flexibility perspective. It allowed us to run both the

lightweight React and Djangos at the same time. The Django comes with a superb backend

visualization as well, allowing for easy addition for test values and testing of the JSONS being

delivered.

One of the first issues that we encountered, was that although Django allows for the rendering

of views in many ways, it must be parsed within a Django or React app. This creates an issue

with using the microservice to process the data. We tried many different parse forms, inputs,

key rendering, and view posting, but none were readable by the service.

The solution we ended up going with was to set up a standard MySQL. This is a very common

build, and most will be able to set it up without difficulty. The trick to enabling the REST API is

to use the program xmysql. This program creates all possible APIs for a mysql, allowing for the

kind of dynamic returns that create a much more flexible database.

We successfully connected the database to the front-end and were able to make calls to the

database using fetch commands in the front end that then query the SQL database.

DATABASE SCHEMA

DATABASE FUNCTIONALITY

GETTING USER FROM DATABASE

ADDING A USER TO THE DATABASE

Although we were able to get the database connected, it was run over localhost server and so
our deployed website does not have access to the database. We adjusted our code to function
fully even without the database and if we had more time, we would have been able to get the
database hosted and accessible on any machine. However, we decided to explore more
technologies such as the microservices rather than working more on the database as we felt it
would be a better and more beneficial learning experience to explore new things

ENTITY RELATIONSHIP DIAGRAM

BACKEND

For our backend, we used microservices developed in Java with Micronaut that builds with

Gradle. We used RESTful API calls from our microservices to communicate between the frontend

and backend. We used Twilio’s OTP SMS services to send and verify OTPs. while we could’ve

used Twilio’s RESTful API, their SDK made integration more seamless in practice.

Image Source: https://codelabs.developers.google.com/codelabs/cloud-micronaut-

kubernetes/index.html?index=..%2F..index#9

WHY MICROSERVICES
Based on information we learned in the course as well from the guest lecture Conor Gallagher’s

presentation, we found that microservices would be the best fit for our application. Microservices

allowed us to easily deploy our backend application and access it via a RESTFUL API.

Furthermore, as a platform for an ebusiness, an instance of our microservice could be easily used

and expanded on. If more customers need our service, we could expand it accordingly

WHY MICRONAUT
We choose micronaut mostly because our backend developer has experience working with it to

create microservices. Furthermore, Micronuat is a leading framework for developing low

memory usage microservices as mentioned by Conor Gallagher. Even though micronaut is not

close to the center of the tech radar currently, we feel that exploring new technology would be

the best use of our time.

Week 10 – Conor Gallagher Guest Lecture

https://codelabs.developers.google.com/codelabs/cloud-micronaut-kubernetes/index.html?index=..%2F..index#9
https://codelabs.developers.google.com/codelabs/cloud-micronaut-kubernetes/index.html?index=..%2F..index#9

HOW WE GENERATE OUR PARTIAL PASSWORD
Our backend service generates by taking the AES encrypted password and randomly selecting

3 indexes from the password and then sending those indexes to the frontend to verify. These

means that the only information that is being sent from the backend are the indexes of the

password rather than the whole password. Our service is also able to generate new partial

password every time the user logs in. The following code displays how we accomplished this:

API DOCUMENTATION AND DEPLOYMENT
It would be too long to explain the full functionality of all of our API endpoints. To find an in-
depth exploration of our API, please visit the GitHub page for our project:

https://github.com/engelsj/Ebusiness-Project

To deploy out project we used a guide that can be found here:

https://codelabs.developers.google.com/codelabs/cloud-micronaut-
kubernetes/index.html?index=..%2F..index#9

Because DevOps was not something covered in our course work, we do not have a deep technical
knowledge on the inner workings of our Kubernetes’s Cluster, however we used information from
the course to choose our node route and location structure to optimize connection for Western
Europe.

Reference: Week 2 – Entities, Servers, Connections

https://github.com/engelsj/Ebusiness-Project
https://codelabs.developers.google.com/codelabs/cloud-micronaut-kubernetes/index.html?index=..%2F..index#9
https://codelabs.developers.google.com/codelabs/cloud-micronaut-kubernetes/index.html?index=..%2F..index#9

LIMITATIONS

DATABASE
Currently, our database is linked to the front-end. We had a number of difficulties connecting

our database with the rest of our project, resulting in use storing some of our client information

on our microservice. Given more time, we would have hoped to have the database interact with

our microservices alone. At the moment, our database only runs on local host. A database hook-

up would make this deployment ready, but we were unable to do this within the given time

constraints.

CACHING VALUES
Our react app revolves greatly around using data input on previous pages to provide some functionality

for other pages which involved looking into caching values. This was an issue we were dealing with for

quite some time. Luckily we found a solution! For caching values to use across pages and class in our react

app we relied heavily on the use of localStorage. LocalStorage is a web API that allows websites and

apps to store data in the browser for later use. Unfortunately, this is not very secure and given more

time this is definitely something we would have liked to find a different solution to solve our issue.

URL ROUTING
We would have liked to make it impossible for users to skip forward in the login process by
changing the appended route path in the URL for our website. Due to the time constraints, we
were unable to add this feature to our final product.

PUT OVER POST
When designing our Microservice, we mostly used POST requests. We understand the problems

with POST requests as they not idempotent, which would allow the user to send multiple requests

before their first one is processed. Ideally, we would like to have PUT requests on our

microservice that have a client ID so that this is not a problem. Additionally, if we would have

liked to looked into the POST requests with a client side ID that Stripe is developing that Conor

Gallagher mentioned during his presentation.

DEPLOYMENT
When we went to deploy our microservice, we found that there were budget constraints that

prevent us from running a lot of microservice through google cloud. To circumvent this, we

somewhat broke traditional microservice architecture by having both the login and OTP

endpoints within the same service. While both of these have their own unique endpoints, they

are hosted under the same API. If we had more time and did not have the cost of cloud hosting

to worry about, we would like to have had to different services hosted on Google cloud.

SSL AND CORS
We ran into an error that prevent our HTTPS microservice from properly communicating with our

HTTPS Heroku website where our browser did not accept the SSL certificate that was generated

from Micronaut. The workaround that we used was forcing the user to manually give permission

to their browser to allow communication with our microservices HTTPS IP. In the future we would

have liked to purchased our own SSL certificate that would be trusted by the user’s browser.

CONCLUSION

Overall, we feel that our project has gone well. We were able to develop our knowledge by

testing out various ideas and solutions. We now have a better understanding of the plethora of

concepts that goes into developing a protected login service. If we were to do this project again,

we would manage our time and tasks better and hopefully deliver a fully deployable project.

We would like to say thank you to Dr Joeran Beel for teaching us about a variety of different

services to do this. This project enabled us to expand our knowledge and put it into practice.

We also appreciate the opportunity to publish all our hard work.

