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I recall vividly when more than a decade ago – I was a PhD student – Konstan & Adomavicius
warned that “the recommender systems research community [...] is facing a crisis where
a significant number of research papers lack the rigor and evaluation to be properly judged
and, therefore, have little to contribute to collective knowledge [14]”. Similar concerns were
already voiced two years earlier by Ekstrand et al. [12]. Over the following years, many
more researchers criticized the evaluation practices in the community [13, 21, 19, 10], myself
included [5, 8, 4, 20, 23, 15, 6, 7]. The situation may have somewhat improved in the past
years due to more awareness in the community [13], the reproducibility track at the ACM
RecSys conference, innovative submission formats like “result-blind reviews” [9] via registered
reports at ACM TORS, and several new software libraries, including Elliot [1], RecPack [16],
Recbole [25], and LensKit-Auto [22]. Yet the decade-old criticism by Konstan & Adomavicius
remains as true today as it was a decade ago.

Konstan & Adomavicius proposed that, among others, best-practice guidelines on recom-
mender systems research and evaluations might offer a solution to the crisis [14]. In their
paper, they also presented results from a small survey that indicated that such guidelines
would be welcomed by many members of the community. However, to my knowledge, no
comprehensive guidelines or checklists have been specifically created for the recommender
systems community, or at least they have not been widely adopted. Recently, I attempted
to develop guidelines for releasing recommender systems research code [3], based on the
NeurIPS and ’Papers with Code’ guidelines [24], but progress has been limited.

I echo the demand1 by Konstan & Adomavicius [14] for the recommender systems
community to establish best-practice guidelines and/or checklists for researchers and reviewers.
Such guidelines would facilitate the conduct of ’good’ research, and they would assist reviewers
in conducting through reviews. By ’good research’ I primarily mean reproducible research
with a sound methodology. But ’good’ research also refers to research that others easily can
build upon, e.g. because data and code are available; research that is ethical; and research
that is sustainable, e.g. because no resources were wasted.

My vision is best-practice guidelines that are not merely a collection of opinions but
are instead grounded in empirical evidence. This approach would be analogous to the
medical field, where guidelines for practitioners are justified based on empirical research
findings. Additionally, these medical guidelines indicate the degree of consensus among
experts, allowing medical practitioners to understand how widely accepted each best practice
is. In areas with less expert consensus, deviations from the best practice by practitioners
would be more acceptable. This model ensures that guidelines are both scientifically robust
and flexible.

In my view, best-practice guidelines for recommender systems research and evaluation
should include the following components in addition to the best practices themselves:

1 Please note that I used ChatGPT to improve my writing. I wrote all the sentences first myself and then
asked ChatGPT for each paragraph to improve the writing but keep the structure.
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1. Justification: A justification for the best practice, ideally based on empirical evidence.
2. Confidence: An estimate of how sound the evidence is.
3. Severity: An estimate of the importance of the best practice and the potential consequences

of not following it.
4. Consensus: The degree of agreement within the community or among experts that the

proposed best practice is indeed a best practice.

Table 1 illustrates what a best practice may look like, using the example of random
seeds. A random seed is an initial value for a pseudo-random number generator, ensuring
that the sequence of random numbers it produces is reproducible. This reproducibility is
crucial for consistent experiment results, fair comparisons between different algorithms, and
reliable debugging. For instance, when splitting a dataset into training and testing sets,
using a fixed random seed ensures the same split is produced each time. This consistency
allows researchers to compare the performance of different algorithms on identical data splits,
ensuring that any performance differences are due to the algorithms themselves and not
variations in the data splits. Generating random random-seeds is not a trivial task, and
dedicated tools exist for it [11].

Creating a preliminary set of guidelines for recommender systems evaluation should be
straightforward. Existing communities, particularly in machine learning, already have robust
best-practice guidelines and checklists. Notably, NeurIPS [17, 18] and the AutoML conference
[2] offer guidelines that could be adapted for recommender system experiments with relatively
minor modifications. Initially, these guidelines do not require empirical evidence or consensus
surveys. They can be simple and aligned with those used in the machine-learning community.
Over time, these guidelines can be tailored more to fit recommender systems research,
expanded and substantiated with empirical evidence and broader consensus.

The creation and justification of best practices can likely be undertaken by any motivated
researcher with experience in recommender systems research. However, the final selection of
these best practices, particularly concerning points 3 (severity) and 4 (consensus), should
be conducted by reputable members of the RecSys community. This could be achieved
through a Dagstuhl seminar with selected experts or by the steering committee of the ACM
Recommender Systems Conference.

In conclusion, establishing well-defined best-practice guidelines, endorsed by the com-
munity and enforced by key publication venues such as the ACM Recommender Systems
conference and the ACM Transactions on Recommender Systems (TORS) journal, would
be a significant move towards resolving the long-standing crisis in the recommender system
research community. For over a decade, the community has struggled with inconsistencies
and lack of rigor in research practices. By adopting and enforcing these guidelines, we can
ensure higher research standards, facilitate reproducibility, and contribute more robustly to
collective knowledge.



Random Seeds
Best-Practice

1) Experiments must be repeated (n>=5) with different random
seeds each time. This is true for each aspect of an experiment that
requires randomness. This includes splitting data and initializing
weights in neural networks.
2) The exact random seeds used for experiments must be reported
in the paper or the code.

Justification In the context of data splitting, Wegmeth et al. [23] showed that
when random seeds differed – i.e. data splits contained different
data due to randomness – the performance of the same algorithm,
with the same hyper-parameters varied by up to 12% [23]. In
contrast, repeating and averaging experiments with different
random seeds, led to a maximum difference of only around 4%.
This means, if only a single run had been conducted, the results
could be up to 6% above or under the ’true’ result, possibly
more. By repeating the experiments, the difference would have
been only ±2% in the worst case. The variance depended on
the applied metrics, cut-offs, datasets, and splitting methods
(lower variance for cross-fold validation, higher variance for hold-
out validation). Therefore, repeating experiments with different
random seeds ensures that the reported result is closer to the
’true’ result.
Reporting the exact random seeds is also a prerequisite (besides
many other factors) for an exact replication of experiments. A
researcher who wants to replicate an experiment and who uses
the identical random seeds as the original researcher, will have
the same data in the train and validation splits as the original
researcher. Knowing the exact random seeds also makes it easier
to detect fraudulent behavior such as cherry picking.

Severity Medium: If not conducted properly, reported results may be off
the ’true’ results by multiple per cent.

Confidence Low (the empirical evidence is based only on one workshop
publication [23]).

Consensus 82% of the ACM RecSys Steering Committee agree with this best
practice. PLEASE NOTE: This is an example for illustration
purposes. The percentage is made up.

Table 1 Best Practices for Random Seeds (Example)
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