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Abstract. As recommender systems become increasingly prevalent, the
environmental impact and energy efficiency of training these large-scale
models have come under scrutiny. This paper investigates the potential
for energy-efficient algorithm performance by optimizing dataset sizes
through downsampling techniques. We conducted experiments on the
MovieLens 100K, 1M, 10M and Amazon Toys and Games datasets, ana-
lyzing the performance of various recommender algorithms under different
portions of dataset size. Our results indicate that while more training data
generally leads to higher performance in algorithms, certain algorithms,
such as FunkSVD and BiasedMF, particularly in cases involving more
unbalanced and sparse dataset like Amazon Toys and Games, maintain
high-quality recommendations with up to 50% reduction in training data,
achieving nDCG@10 scores within ∼13% of their full dataset performance.
These findings suggest that strategic dataset reduction can decrease com-
putational and environmental costs without substantially compromising
recommendation quality. This study advances sustainable and green rec-
ommender systems by providing actionable insights for reducing energy
consumption while maintaining effectiveness.
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1 Introduction

Advancements in recommender systems have enhanced user experience. However,
these advancements came at a substantial computational and energy cost [30,35].
Large datasets do not only increase operational expenses but also result in higher
energy consumption and carbon emissions, contributing to a more significant
environmental impact [1, 16, 30, 31, 35]. In extreme cases, energy consumption
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between datasets differs by factor 1,444, such as between LastFM vs. Yelp with
the DGCF algorithm [35].

Given the environmental and computational challenges associated with large
datasets, it’s important to question whether using the entire datasets is always
necessary. For instance, datasets like MovieLens 10M are frequently employed in
training recommender systems. But is it necessary to use 10 million instances,
especially with simple baseline algorithms? Or would downsampling the dataset to
e.g. 10% suffices, which, in turn, might save 90% of energy? Similarly, dataset size
might be an important factor when choosing datasets for recommender-system
experiments [10].

In our work, we investigate whether downsampling the dataset can lead
to an acceptable trade-off between energy efficiency and the performance of
recommender algorithms. We see our work in the context of "Green Recommender
Systems" as defined by Beel et al. as follows [9].

“Green Recommender Systems” are recommender systems designed to
minimize their environmental impact throughout their life cycle - from re-
search and design to implementation and operation. Green Recommender
Systems typically aim to match the performance of traditional systems but
may also accept trade-offs in accuracy or other metrics to prioritize sus-
tainability. Minimizing environmental impact typically but not necessarily
means minimizing energy consumption and CO2 emissions. [9]

For our current work, we hypothesize that by downsampling recommender system
datasets, we can save time, energy, and CO2 emissions, while obtaining nearly
the same performance as with the full datasets.

2 Related Work

The field of green recommender systems has only started evolving recently [30,35].
We also recently proposed "e-fold cross-validation", an energy-efficient alternative
to k-fold cross-validation [5,11,23]. Wegmeth et al. introduced EMERS, a tool to
measure the electricity consumption of recommender system experiments [36].
Also, judging on the "accepted papers" list of the RecSoGood workshop, more
related work is to be published very soon [26,32].

While the "green" concept in recommender systems is new, other disciplines,
like Automated Machine Learning, explore options to save energy for a longer
time [2, 13,14,20,27,29,33].

In the domain of recommender systems, several studies have explored the im-
pact of dataset size on the efficiency of algorithmic performance, which aligns the
key focus of this study. Notably, Bentzer and Thulin explore the trade-off between
accuracy and computational efficiency in collaborative filtering algorithms under
limited data conditions [12]. They found that IBCF algorithm performs better
in terms of accuracy with smaller datasets compared to SVD algorithm, while
SVD outperforms IBCF in terms of speed and scalability with larger datasets.
Their study highlights the performance differences between these two algorithms



but does not address how other algorithms perform under similar constraints.
This gap is relevant to our research, which seeks to evaluate a wider range of
algorithms for optimizing both energy efficiency and performance.

Additionally, Jain and Jindal’s review emphasizes that strategic sampling
and filtering can enhance recommendation efficiency by improving computational
speed and accuracy [21]. However, their review lacks experimental validation
of how these techniques impact algorithm performance with varying dataset
sizes. Our study addresses this gap by empirically evaluating these effects on
recommender systems. Judging based on the paper’s title and abstract, Spillo et
al. appear to have conducted research similar to ours [31]. However, at the time
of conducting our research and writing our manuscript, the work of Spillo et al.
was not yet publicly available but only announced on the ACM Recommender
Systems conference website as an accepted paper.

It is worth mentioning that most papers and experiments focusing on down-
sampling and data efficiency are predominantly conducted in domains like (au-
tomated) machine learning, AI and computer vision [2, 13, 14, 20, 27, 33], with
more extensive research compared to the recommender systems domain. More-
over, studies within this broader field also corroborate the potential benefits of
downsampling. Research by Zogaj et al. demonstrates that reducing dataset sizes
can enhance both computational efficiency and predictive accuracy in genetic
programming-based AutoML systems [37]. Their experiments show that down-
sampling large datasets can even in some cases result in better performance than
using the full dataset, with shorter search times.

These studies underscore and evaluate the potential benefits of downsampling
and its impact on model performance, but are not directly applicable to traditional
recommender system algorithms, where such effects remain underexplored. Espe-
cially when thinking of automated recommender systems (AutoRecSys [3,19,34]),
where large spaces of configurations must be searched, energy efficiency is funda-
mentally important.

3 Methodology

3.1 Datasets & Preprocessing

We used four datasets for our experiment: MovieLens 100K, MovieLens 1M,
MovieLens 10M, and Amazon Toys and Games. The MovieLens datasets
feature relatively balanced ratings across a scale from 1 to 5. In contrast, the
Amazon Toys and Games dataset exhibits a skewed distribution, with ∼90% of
ratings concentrated in the 4 and 5 ranges. The following preprocessing steps
were applied to the datasets: removal of duplicate rows, averaging duplicate
ratings, and applying 10-core pruning to retain users and items with at least 10
interactions.

The dataset details before and after preprocessing are in Table 1.



Table 1: Basic information of datasets before and after preprocessing
Before Preprocessing After Preprocessing

Dataset #Users #Items #Interactions
Avg.

#Int. per
user

Avg.
#Int. per

item
#Users #Items #Interactions

Avg.
#Int. per

user

Avg.
#Int. per

item
MovieLens 100K 943 1,682 100,000 106 59 943 1,152 97,953 103 85
MovieLens 1M 6,040 3,706 1,000,209 165 269 6,040 3,260 998,539 165 306
MovieLens 10M 69,878 10,677 10,000,054 143 936 69,878 9708 9,995,471 143 1029
Amazon Toys and Games 208,180 78,772 1,828,971 8 23 11,609 8,443 202,721 17 24

3.2 Data Splitting and Downsampling

We applied a User-Based Split [24], with 10% of each user’s interactions ran-
domly selected for the test set, 10% for validation, and 80% for training. The
validation set was used for hyperparameter tuning, maintaining a comparable size
between the validation and test sets to account for the impact of the training-to-
validation/test ratio on results, as highlighted in prior research [15]. The training
set was downsampled to various proportions (10%, 20%, 30%, up to 100%) by
randomly selecting different portions of each user’s interactions. This approach
ensures consistency in user representation across all sets while varying the number
of interactions in the training set.

3.3 Algorithms and Evaluation

We trained the following algorithms on the downsampled training sets using the
LensKit [17] and RecPack [25] libraries:

Table 2: Information of algorithms used in our experiment

Algorithms Bias Po
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lar
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Library LensKit LensKit LensKit LensKit LensKit LensKit LensKit RecPack RecPack RecPack RecPack

Performance was evaluated using the nDCG@10 metric, ensuring that all
libraries adhered to an identical standard calculation logic to facilitate a fair
comparison of results across algorithms [28].

4 Results & Conclusion

Our research investigated the impact of downsampling on the efficiency of rec-
ommender system algorithms by analyzing performance metrics and dataset
characteristics. Variations in user/item interaction densities and rating distribu-
tions, as discussed in subsection 3.1, impact algorithm performance. Preprocessing
facilitated consistent evaluations across varying dataset sizes. Before presenting
the experimental results (Figure 1), it is useful to estimate the potential environ-
mental benefits of the downsampling strategy proposed in this work, specifically
in terms of reducing carbon footprint and CO2e emissions, with a calculation
example where the training set is downsampled to 50% of its original size.



Based on our observations and calculations, downsampling the training data
to 50% reduces the runtime for training and evaluation phases to ∼72% of
the runtime required for the full dataset, on average. Furthermore, the energy
consumption for a single run of a recommender algorithm on one dataset is
estimated at 0.51 kWh [35]. Assuming 10 hyperparameter configurations per
algorithm and using the global average conversion factor of 481 gCO2e per
kWh [18], and accounting for a potential increase by a factor of 40 to consider
preliminary tasks such as algorithm prototyping, initial tests, debugging, and
re-runs [35], we estimate the potential carbon equivalent emissions savings from
downsampling the training set to 50% compared to the full set per algorithm per
dataset as follows:

(100%− 72%)× 0.51 kWh × 10× 481 gCO2e/kWh × 40 ≈ 27.4KgCO2e.

This estimation roughly quantifies the reduction in CO2e emissions resulting from
the training of a single algorithm on a single dataset, based solely on the reduction
in runtime following downsampling. It assumes that the hardware used for the full
dataset will also be employed for the downsampled dataset and that a nearly linear
relationship exists between runtime, energy consumption, and carbon emissions,
as supported by the ML CO2 Impact calculator tool [22]. In the upcoming
sections, we detail the principal observations derived from our results and delve
into how they inform the objectives of our research. For simplicity in discussing
the algorithms examined in this study, we have categorized the algorithms into two
groups. This division reflects the observed similarities in performance and results
within each group, with distinct behaviors compared to the other group as shown
in Figure 1, facilitating clearer analysis of their comparative effectiveness. The
Random algorithm serves as a baseline for comparison but is not included in the
statistics of either group. Table 3 provides an overview of these categorizations.

Table 3: Categorization of Examined Algorithms
Group Algorithms included
Group 1 UserKNN, SVD, ItemKNN (both LensKit and RecPack version), NMF
Group 2 Bias, Popularity, FunkSVD, BiasedMF, Popular

Observations Several key observations can be outlined from our analysis of
recommender system algorithms across different datasets, each numbered for
easy reference. (1) larger datasets consistently resulted in improved performance
across all algorithms, with Group 1 algorithms benefiting significantly from in-
creased data availability. (2) In examining the performance metrics, we observed
that Group 1 algorithms displayed significant improvements when the dataset
used for training exceeded ∼30% of the total data. Specifically, downsampling
the MovieLens 100K dataset to ∼50% resulted in a ∼50% decrease in average
nDCG@10 values of this group’s algorithms, while reducing to ∼30% led to a
∼65% decrease, highlighting a near-linear relationship between dataset size and
performance. (3) Conversely, Group 2 algorithms demonstrated more gradual



performance improvements, with nDCG@10 values decreasing by ∼23% and
∼29% in average when the dataset was downsampled to ∼50% and ∼30%, respec-
tively. (4) The sparse Amazon Toys and Games dataset particularly illustrated
a more pronounced performance gap between these two groups of algorithms.
When downsampling to ∼50% and ∼30%, Group 2 algorithms experienced only
∼13% and ∼17% average drops in performance, respectively, which is less severe
compared to the denser MovieLens datasets.

Fig. 1: nDCG@10 scores for each algorithm trained on varying portions of the
datasets. The horizontal axis shows the percentage of the full training set, where
100% equals 80% of the total dataset, with other percentages relative to this.

Interpretation From these observations, it appears that the size and sparsity
of datasets significantly influence the performance of recommender system al-
gorithms. Observation (1) highlights that contrary to our expectations, larger
data volumes, including those from extensive datasets like MovieLens 10M, gen-
erally lead to better algorithm performance. However, the extent of improvement
depends on the specific algorithm and the characteristics of the dataset. Obser-
vations (2) and (3) highlight that Group 1 algorithms are highly dependent on
larger datasets to perform optimally. In contrast, Group 2 algorithms maintain
relatively stable performance even with reduced data, striking a balance between
performance and computational efficiency. This observation is evident from the
narrower gap in the nDCG@10 scores distribution box plot between 50% and
100% dataset utilization for algorithms in Group 2, compared to the larger gap
seen in Group 1, as shown in Figure 2. The detailed analysis in observation



Fig. 2: Distribution of nDCG@10 Scores Across Four examined Datasets for Two
Distinct Algorithm Groups at 50% and 100% Dataset Utilization.

(4) shows that in sparse environments, such as the Amazon Toys and Games
dataset, downsampling effectively reduces computational demands with only
minimal performance loss. This indicates that strategic downsampling can be a
viable method especially in contexts where energy optimization is crucial without
significantly compromising accuracy.

Conclusion This study underscores the potential for optimizing recommender
systems through dataset size reduction. Although most algorithms demonstrate
enhanced performance with larger training datasets, our analysis has pinpointed
specific scenarios where the trade-off between energy efficiency and accuracy
favors efficiency. In these cases, significant savings are achieved with minimal
detriment to accuracy. Some algorithms consistently maintain high performance
even with reduced data volumes, highlighting their potential for energy-efficient
AI development.

Therefore, we answer our research question by affirming that it can be possible
to identify an optimal trade-off between maintaining algorithmic performance and
reducing dataset size. Specifically, our analysis shows that strategic downsampling
may improve energy efficiency while maintaining performance comparable to
the original dataset size, thereby supporting the optimization of AI systems and
recommenders. However, more research is necessary to find out when exactly
downsampling is a sensible approach, as sometimes, performance varies notably.
We hope that in the long term, downsampling datasets becomes an accepted best-
practice [7,8], for the recommender-system community that helps contributing
to green and sustainable recommender systems.

Acknowledgment This paper benefited from ChatGPT for grammar and
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