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ABSTRACT
When designing recommender-systems experiments, a key ques-
tion that has been largely overlooked is the choice of datasets. In
a brief survey of ACM RecSys papers, we found that authors typ-
ically justified their dataset choices by labelling them as public,
benchmark, or ‘real-world’ without further explanation. We pro-
pose the Algorithm Performance Space (APS) as a novel method
for informed dataset selection. The APS is an n-dimensional space
where each dimension represents the performance of a different
algorithm. Each dataset is depicted as an n-dimensional vector, with
greater distances indicating higher diversity. In our experiment,
we ran 29 algorithms on 95 datasets to construct an actual APS.
Our findings show that many datasets, including most Amazon
datasets, are clustered closely in the APS, i.e. they are not diverse.
However, other datasets, such as MovieLens and Docear, are more
dispersed. The APS also enables the grouping of datasets based
on the solvability of the underlying problem. Datasets in the top
right corner of the APS are considered ’solved problems’ because
all algorithms perform well on them. Conversely, datasets in the
bottom left corner lack well-performing algorithms, making them
ideal candidates for new recommender-system research due to the
challenges they present.
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1 INTRODUCTION
A key question in recommender-systems offline evaluation is which
datasets to use. Beel and Brunel [6] found that most researchers
use MovieLens (40%), Amazon (35%), or Yelp (13%) datasets. This
trend is confirmed by others [3, 12, 24, 25, 29]. The reasons for
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Figure 1: Illustration of the Algorithm Performance Space
(APS). The x-axis and y-axis represent the performance
(nDCG) of algorithms A1 and A2. Orange circles indicate
datasets. Datasets in the top right corner of the APS are con-
sidered ’solved problems,’ as both algorithms perform well
on them. Conversely, datasets in the bottom left corner lack
well-performing algorithms.

these choices are largely unclear. Cremonesi and Jannach [13] criti-
cized the common lack of justification for dataset selection in the
community. We surveyed 41 ‘Full Papers’ from the ACM RecSys
2023 conference that evaluated algorithms offline. The authors of
23 papers (56%) indirectly justified their choices by a) referring to
datasets as ‘public’ or ‘real-world’ (24%; 10 out of 41) or b) referring
to the application domain, e.g. news or cross-domain, or the task,
such as session-based recommendation (32%; 13 out of 41). Authors
of 18 papers (44%) explained their choices by referring to datasets
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as “benchmark” or “widely used” datasets. No authors justified their
choice of datasets in detail.1

While it is common – and not necessarily problematic – to evalu-
ate algorithms on benchmark datasets, especially in machine learn-
ing [17, 18, 21, 22, 26], the justifications provided by recommender-
systems authors deserve closer scrutiny. Notably, there are no
true benchmark datasets in the recommender-systems community.
Therefore, we should critically examine any claims that refer to
recommender-systems datasets as ‘benchmarks’. Moreover, while
choosing a dataset because it is widely used, public, or “real-world”
may have its merits, this should not be the sole justification.

In summary, we agree with Cremonesi and Jannach that recom-
mender systems researchers should make more informed decisions
on which datasets to use for experiments. Evaluating a recommen-
dation algorithm offline aims to estimate its performance on future
unknown data. Choosing random, convenient, or popular datasets
likely won’t achieve this goal optimally. The community should
discuss the factors influencing dataset selection and establish best
practice guidelines. Researchers should also report their reasoning
for choosing a dataset in their publications.

In this paper, we propose the Algorithm Performance Space
(APS) as a novel method to make an informed decision on selecting
datasets for recommender-system experiments to obtain good gen-
eralization power. We do not claim to have found the final answer
but see the proposed method as one suggestion that will hope-
fully initiate a discussion in the community and eventually lead to
accepted best practices on dataset selection.

2 RELATEDWORK
Recommender-systems datasets have been subject to extensive
research. Researchers introduced new datasets [7–9, 30, 31], in-
troduced synthetic datasets [11, 19, 20, 23], augmented datasets
[10, 14, 33], proposed methods for creating datasets [2] and they
discussed how (not) to prune datasets [6]. Fan et al. [15] empha-
sized understanding data generation mechanisms behind datasets.
They argue that the context in which interactions are generated
can differ from real-world applications, limiting the datasets’ ability
to predict real-world model performance accurately. Specifically,
they examined MovieLens and its data acquisition methods. Their
findings revealed that nearly half of all users submitted all their
ratings within a single day. Such insights are crucial for evaluating
models in broader recommender-system scenarios.

To our knowledge, only Chin et al. [12] share our research goal
of making informed decisions on dataset selection for offline evalu-
ation experiments. Chin et al. [12] recommend choosing datasets
with diverse characteristics, such as space, shape, density, and in-
teraction distribution across users and items. They classified 51
datasets into five clusters using k-means clustering and selected
three datasets from each cluster for their experiments. These ex-
periments showed significant differences (p < 0.05) in algorithm
performance (UserKNN, ItemKNN, RP3beta, WMF, and Mult-VAE)
based on these characteristics. For example, RP3beta performed up

1We acknowledge that although we critique the current practice in the community
of not justifying dataset selection, we are not exempt from this critique. In our own
work to date, we have also failed to provide thorough justifications.

to 45% better on relatively sparse datasets of moderate size but was
least effective on denser, slightly larger datasets.

Analyzing the impact of dataset characteristics on algorithm
performance is not new. Adomavicius and Zhang [1] found a corre-
lation between dataset characteristics and algorithm performance
in 2012. This finding is not surprising; if algorithms perform differ-
ently on different datasets, the reasonmust lie in the data. Therefore,
it seems intuitive that recommender-systems researchers should
choose datasets with varying characteristics, where algorithms
might perform differently. However, other studies found that the
similarity of datasets in terms of user characteristics, item character-
istics, sparsity, etc., does not fully determine algorithm performance
[5, 13, 16, 27]. Moreover, Chin et al. observed that several Amazon
datasets appeared in different clusters, such as Amazon Movies
& TV (cluster 1), Amazon Toys & Games (cluster 3), and Amazon
Patio Lawn & Garden (cluster 4). Yet, algorithm performance on
Amazon datasets was inconclusive both within and across clusters.

This gives us reason to assume that dataset characteristics may
not be an ideal determinant of algorithm performance. Therefore,
in this work, we consider dataset selection from the perspective
of algorithm performance. That said, the work by Chin et al. and
ours are not mutually exclusive. Combining dataset characteristics
and algorithm performance into one selection method would be an
exciting field of research for the future.

3 THE CONCEPT OF ALGORITHM
PERFORMANCE SPACES

To identify a diverse set of recommender-system datasets, we pro-
pose the utilization of the Algorithm Performance Space (APS).
Initially introduced by Tyrrell et al. [28] to represent instances
within a dataset for meta-learning with Siamese Neural Networks,
we extend the APS concept to represent entire datasets for identi-
fying diversity among them. The APS is an n-dimensional space,
where each dimension corresponds to the performance of a distinct
algorithm. Performance metrics can vary; however, for simplic-
ity, we utilize normalized Discounted Cumulative Gain (nDCG)
throughout this study and our examples. Each dataset within the
APS is represented as an n-dimensional vector, with each dimension
reflecting the performance of a specific algorithm on that dataset.
Placing datasets in the APS allows the expression of a degree of
diversity between the datasets: the larger the distance between two
datasets in the APS, the greater the diversity. Unlike Chin et al.,
our definition of diversity is unrelated to dataset characteristics but
instead refers to algorithm performance on the datasets.

We illustrate the Algorithm Performance Space with an exam-
ple (Figure 1). Suppose there are only two algorithms, A1 and A2,
creating a two-dimensional APS. The performance (nDCG) for A1
is plotted on the x-axis, and the performance of A2 on the y-axis.
Datasets are represented as orange circles. For instance, dataset D8
is represented as a two-dimensional vector (or point2) with coordi-
nates 𝑥 ≈ 1 and 𝑦 ≈ 0. This indicates that algorithm A1 performed
well on dataset D8, with an nDCG near 1, while A2 performed
poorly, with an nDCG near 0. Dataset D8 is in close proximity to
D9, meaning the algorithms A1 and A2 performed on D8 similar

2We use the terms point and vector interchangeably, even though this might be
mathematically incorrect.
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to the performance on D9. Consequently, based on our definition,
datasets D8 and D9 would be considered not diverse because the
distance between them is small, meaning algorithms perform sim-
ilarly on them. Conversely, on dataset D15 (positioned centrally),
both algorithms A1 and A2 exhibited mediocre performance, each
achieving an nDCG of around 0.5. The distance between D15 and D8
is relatively large, meaning the algorithms performed differently on
them. Therefore, datasets D15 and D8 would be considered diverse.

The rationale behind the APS is as follows. If some datasets
D1...Dm are close to each other in the APS, this indicates that all al-
gorithms A1...An in the APS have performed similarly on them. To
clarify, this does not imply that all n algorithms achieved the same
performance on the m datasets. It could be, for instance, that algo-
rithms A1, A2 and A3 performed well on them datasets; algorithms
A4 and A5 performed poorly on the m datasets and algorithms
A6...An exhibited mediocre performance on them datasets. In other
words, algorithm A1 performed consistently across the m datasets,
A2 performed consistently across the m datasets (but not neces-
sarily similarly to A1) and all other n algorithms also performed
consistently across the m datasets. Therefore, it seems likely to us
that a novel algorithm An+1 – that is not part of the APS – will also
perform consistently across the m datasets (whether performance
will be high, low or mediocre cannot be predicted). If, for instance,
algorithm An+1 performs poorly on one or two of the n datasets,
we consider it extremely likely that algorithm An+1 will perform
similarly on the remaining n datasets because this behavior was
true for all n algorithms. Consequently, evaluating the novel al-
gorithm on one or two of the n datasets would be sufficient. Our
assumption should hold, especially in a high-dimensional APS.

If all, or at least many, algorithms perform consistently across
the datasets, there must be an underlying reason, which must lie in
the data. Thus, the general idea by Chin et al. to group datasets by
dataset characteristics is intuitive. However, we argue that it will
be difficult, if not impossible, to identify all data characteristics that
impact how an algorithm will perform on a particular dataset. Our
approach focuses on the performance of algorithms, regardless of
the reason for variances in performance.

Based on the above rationale, we argue that researchers typically
should choose datasets with high diversity, i.e., datasets that are
highly distant from each other in the APS. This approach allows
researchers to determinewhether their algorithm is an "all-rounder"
that performs well across various scenarios or excels only in specific
areas of the APS. However, there may be situations where selecting
several non-diverse datasets is appropriate, too.

The APS serves another purpose: it enables the grouping of
datasets based on the solvability of the underlying problem. Datasets
in the top right corner of the APS can be considered ‘solved prob-
lems’, as each algorithm in the APS performs well on them. Such
datasetsmight not be ideal candidates for new recommender-system
experiments since numerous algorithms have already achieved high
performance. Further development for these datasets would likely
yield minimal value, as existing algorithms are near-optimal per-
formance. Consequently, the likelihood of developing an algorithm
that significantly outperforms the current state of the art on these
‘solved problems’ is low or even impossible.

In contrast, datasets placed in the bottom left corner are those for
which no or few well-performing algorithms currently exist. These

datasets could be prime candidates for new recommender-system
research as they represent true challenges. Significant progress
would be achieved if a researcher developed a novel algorithm
that performs well on such a dataset. Similarly, datasets where
algorithms perform mediocrely are positioned in the middle of the
chart. Developing an algorithm that performs well on these datasets
would also signify real progress. For datasets in the top-left and
bottom-right corners, some algorithms perform well while others
do not. Whether further efforts should be directed toward finding
more algorithms that perform well on these datasets or whether
the current state is sufficient remains a topic for debate.

We want to emphasize that we are not providing definitive rec-
ommendations on choosing datasets based on the APS. While we
have offered examples of potential arguments, these are illustrative
rather than prescriptive. A key benefit of the APS is that it allows
individual researchers to apply their own reasoning to dataset se-
lection. If researchers explain their reasoning in their manuscripts,
reviewers and readers can evaluate the validity of the authors’
choices. There may be, for instance, valid reasons to include solved-
problems datasets for experiments or to select multiple datasets
from the same area within the APS. The APS provides a frame-
work for researchers to consider differences among datasets and
systematically justify their decisions.

4 EXPERIMENT
In the previous section, we introduced the concept of an Algorithm
Performance Space (APS) for informed dataset selection. In this
section, we present the results of an experiment involving 29 algo-
rithms, including a random recommender, and 95 datasets. The goal
of this experiment was to explore the practical appearance of an
APS, rather than to obtain definitive evidence of its effectiveness.

4.1 Methodology
We ran 29 recommendation algorithms from RecBole [32] with
default hyperparameters on 95 recommender-systems datasets to
construct and examine an actual APS. Details on the algorithms and
datasets are provided in the supplemental material3. The datasets
include 74 with explicit feedback and 21 with implicit feedback.
To generate top-n recommendations and calculate nDCG, we con-
verted the explicit feedback into implicit feedback by considering
each rating as a positive interaction. We applied 5-core pruning to
all datasets. The training and evaluation were limited to 7,000 GPU
hours on our university’s GPU cluster (NVIDIA Tesla V100). We
employed 5-fold cross-validation, allocating 30 minutes for train-
ing each fold of the 29 algorithms across the 95 datasets4. While
default hyperparameters and a 30-minute training period may not
lead to optimal algorithm performance, we deem this methodology
appropriate for obtaining an initial understanding of the APS.

3https://code.isg.beel.org/Informed-Dataset-Selection-via-APS/
4102 out of the possible 29x95=2755 pairings (3.7%) of datasets and algorithms failed in
training, e.g., due to the time limit or failing to create an embedding, and are therefore
missing in our evaluation e.g. the APS and reduced APS

https://code.isg.beel.org/Informed-Dataset-Selection-via-APS/
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Figure 2: Four of the 812 "mini" 2-dimensional Algorithm
Performance Spaces. MovieLens datasets are illustrated by
violet crosses, Amazon datasets black, other datasets by blue
circles. Axes show the relative nDCG performance (1 = best-
performing nDCG; 0 = worst-performing nDCG)

4.2 812 Mini-APS
Given 29 algorithms, we would typically build a 29-dimensional
APS. However, a 29-dimensional space cannot be visualized. There-
fore, we first build 29x28 = 812 two-dimensional Algorithm Perfor-
mance Spaces, which we term "Mini-APS". We normalized each axis
so that the best-performing algorithm (measured by nDCG) would
get a value of 1 and the worst-performing algorithm a value of 0. A
selection of 4 of these 812 Mini-APS is shown in Figure 2. All 812
APS are available in the supplemental material5. Given that Movie-
Lens and Amazon datasets are among the most popular datasets
in recommender-systems research [3, 6, 12], we highlighted these
datasets in the charts. MovieLens datasets are highlighted as a violet
cross, and Amazon datasets are highlighted in black.

The top-left of Figure 2 shows the mini-APS with the DGCF
and Random algorithm. The Random algorithm served as a con-
trol group. The chart shows that the random algorithm performed
poorly on all datasets, whereas results for DGCF are more spread.
DGCF performed very well on some datasets, and on others, poorly.

The top-right of Figure 2 shows the mini-APS with the NAIS
and MacridVAE algorithms. The APS shows that MacridVAE out-
performs NAIS on all datasets. In the bottom-right of Figure 2,
the algorithms BPR and SpectralCF perform almost alike. Almost
all datasets are plotted on the diagonal. The bottom-left of Figure
2 shows NNCF vs. NCEPLRec. While there is a concentration of
datasets near the origin, the spread of datasets is relatively large.
Overall, it is notable that the Amazon datasets (black; Figure 2) are
relatively close together in nearly all 812 Mini-APS. In contrast, the
MovieLens datasets (violet) have more distance from each other.
Our observation regarding the Amazon datasets is particularly

5https://code.isg.beel.org/Informed-Dataset-Selection-via-APS/

Figure 3: The reduced APS for which the 29 dimensions were
reduced to two with Principal Component Analysis (PCA)

interesting compared to the results by Chin et al. [12]. In their anal-
ysis, focusing on dataset characteristics, the Amazon datasets were
spread out across four out of five clusters. This means, based on
dataset characteristics, the Amazon datasets are diverse. Based on
algorithm performance, the Amazon datasets are not (very) diverse.

The Mini-APS (Figure 2) differ somewhat from our expectations
(Figure 1). Contrary to our expectation, the datasets in theMini-APS
usually are not widely spread and achieve relatively low nDCGs on
most datasets. The datasets tend to cluster around the origin and/or
the diagonals. The clustering around the diagonals indicates that
algorithms tend to perform similarly on dataset, meaning if one
algorithm performs well (poorly), the other algorithms also tend
to perform well (or poorly). There are exceptions, though. In our
view, this finding emphasizes the importance of an informed dataset
selection: Apparently, most datasets are very similar in terms of
how algorithms perform on them, thus making it even more critical
and difficult to identify diverse datasets.

4.3 Reduced Algorithm Performance Space
To get a more comprehensive overview, we reduced the APS from
29 to 2 dimensions via Principle Component Analysis (PCA) (Figure
3). In this reduced APS, the spread of datasets is notably larger.

Once again, we observe that the Amazon datasets (black) are
clustered relatively close together, indicating that algorithms tend
to perform similarly on all Amazon datasets. While the MovieLens
datasets (100K, 1M, Latest-Small) are further apart, they are simi-
lar in terms of the first component, which explains 91.84% of the
variance. Interestingly, on the right side of the chart, at the top
and bottom are relatively unpopular datasets such as FilmTrust,
Docear [8], Personality, KGRec-Music, and LearningFromSets, with
the exception of MovieLens 1M. It would be interesting to explore
why these datasets are far from the others.

It must be noted that the axes do not represent performance any
more. Hence, datasets, e.g. in the top-right corner, do not necessarily
represent datasets on which algorithms perform very well.

https://code.isg.beel.org/Informed-Dataset-Selection-via-APS/
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5 SUMMARY AND DISCUSSION
We introduced Algorithm Performance Spaces (APS) for informed
dataset selection. Although our current research is preliminary, we
see great potential. We envision an extensive APS containing the
performance values of many algorithms on numerous datasets. Un-
like inflexible benchmark datasets in machine learning, APS would
avoid focusing on a fixed set of datasets. Researchers could extend
APS with new datasets (public or private), use APS to identify di-
verse or similar datasets based on their use case, and explain their
reasoning in their manuscripts, allowing reviewers to judge the
validity of the reasoning.

Many open questions remain. For instance, can and should APS
be combined with dataset characteristics? How should distance be
calculated in a high-dimensional APS? How exactly should datasets
be chosen based on APS? Should there be a standardized APS for all
recommender-systems researchers, or should each researcher build
their own? Should there be ‘sub-spaces’ for different evaluation
metrics, algorithms, and data preprocessing methods, such as one
APS for movies and another for eCommerce? Most importantly,
how can the effectiveness of APS be shown empirically? It is also
crucial to debate the impact of hyperparameter optimization (HPO),
training duration, and data preprocessing (e.g., 5-core pruning or
converting explicit to implicit feedback) on APS. These factors
likely significantly influence dataset placement in APS. Also, there
is a trade-off to consider when developing APS. On the one hand,
APS should include many algorithms to highlight their strengths
and weaknesses across datasets effectively. On the other hand,
researchers need to easily place new datasets in the APS, requiring
all algorithms to be run on the dataset. The more algorithms an
APS has, the more challenging it becomes to add a new dataset.

In summary, Algorithm Performance Spaces (APS) uniquely visu-
alize and analyze how different algorithms perform across various
datasets, focusing on performance outcomes rather than dataset
characteristics. APS help researchers identify diverse or similar
datasets based on algorithmic performance, likely enhancing gen-
eralization to new, unseen data. APS also distinguish between well-
solved and challenging datasets, guiding researchers to prioritize
those that can drivemeaningful advancements in algorithm develop-
ment. By offering a clear and extendable performance-basedmethod
for dataset selection, APS can enhance informed decision-making
in recommender-systems research, improving the transparency,
rigor, and generalizability of offline evaluations.
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