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ABSTRACT  

This paper introduces e-fold cross-validation, an energy-efficient alternative to k-fold cross-validation. It dynamically 

adjusts the number of folds based on a stopping criterion. The criterion checks after each fold whether the standard 

deviation of the evaluated folds has consistently decreased or remained stable. Once met, the process stops early. We tested 

e-fold cross-validation on 15 datasets and 10 machine-learning algorithms. On average, it required 4 fewer folds than 10-

fold cross-validation, reducing evaluation time, computational resources, and energy use by about 40%. Performance 

differences between e-fold and 10-fold cross-validation were less than 2% for larger datasets. More complex models 

showed even smaller discrepancies. In 96% of iterations, the results were within the confidence interval, confirming 

statistical significance. E-fold cross-validation offers a reliable and efficient alternative to k-fold, reducing computational 

costs while maintaining accuracy. 
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1. INTRODUCTION  

K-fold cross-validation is a well-established method for model evaluation and hyperparameter optimization in machine 

learning and related fields [5][7]. Compared to a hold-out split, where the entire dataset is split into a single train/validation 

split, k-fold cross-validation ensures that each instance of the dataset is used for both training and validation. With k-fold 

cross-validation, the performance of the model can be observed on different subsets of the data, and the trade-off between 

bias and variance can be better understood [5]. As a result, models are trained and validated 𝑘 times with different subsets, 

which is supposed to improve the performance and variability of the model compared to a single train/validation split and 

therefore is expected to provide more reliable results [5][6]. Hence k-fold cross-validation is usually preferred over a 

simple train/validation split [19][5]. While k-fold cross-validation offers advantages, it comes with disadvantages that are, 

however, generally accepted: k-fold cross-validation requires 𝑘 times more evaluation time, 𝑘 times more computational 

resources and consequently, 𝑘 times higher costs and energy consumption [7]. The increased energy consumption also 

results in a higher level of CO2 emissions, because the energy required for the additional computations is directly linked 

to the number of emissions generated resulting in 𝑘 times more CO2 emissions. Furthermore, there is no fixed, optimal 

value for 𝑘 that is always ideal [10][4][7]. In literature and by most researchers, a 𝑘 between 5 and 10 is considered optimal 

[6][8][5]. This k remains typically static across all datasets and algorithms during one experiment [7]. This has a risk that 

𝑘 was not chosen large enough and thus the model performance metric could not be optimal. On the other hand, there is a 

risk that 𝑘 was chosen unnecessarily large, so that the model performance metric is close to the optimum, but more 

resources are consumed than necessary.  

The goal of our work is to develop a dynamic and energy efficient alternative to k-fold cross-validation, called e-fold cross-

validation. The difference to conventional k-fold cross-validation is that e-fold cross-validation dynamically adjusts the 

number of folds based on the stability of the previously validated folds. While k-fold cross-validation requires a fixed 

number of validations (k) to be performed regardless of the intermediate results, e-fold cross-validation introduces a 

dynamic stopping criterion. After each fold e, the performance of the respective folds is checked to see how much they 

differ from each other. If the standard deviation of the already evaluated folds does not change significantly or even 

repeatedly decreases, the method is stopped after 𝑒 folds. The idea is that 𝑒 is chosen intelligently and individually for each 

situation, ensuring that it is as small as possible to save resources, but still large enough to achieve results that are close to 

the optimal results of the standard k-fold cross-validation with 𝑘 = 10. Unlike other dynamic methods, discussed in detail 



 

 
 

 

 

 

in Section 2, which focus on the early elimination of poorly performing models based on their average scores, e-fold cross-

validation is based on the statistical stability of the model's performance across the folds. 

2. RELATED WORK 

The existing research can be categorized into three main groups. First determining the optimal size of 𝑘 in k-fold cross-
validation. Second alternative approaches to a fixed 𝑘. Third, studies that focus on saving energy in machine learning. 

There are studies on the choice of 𝑘 in k-fold cross-validation. Kohavi recommends 𝑘 = 10 as the optimal value because 

this offers a good balance between bias and variance and at the same time keeps the computational complexity in an 

acceptable limit [6]. This recommendation is supported by Marcot et al.[8] and Nti et al.[10], although they note that for 

larger datasets, 𝑘 = 5 may be sufficient to reduce computational costs without significantly affecting accuracy. Wong et al. 

investigated whether repeated k-fold cross-validation provides more reliable estimates of accuracy. They found that the 

estimates from different replicates are highly correlated, especially with a large number of folds which can lead to an 

underestimation of variance. Their results suggest that choosing a higher k value for k-fold cross-validation with a small 

number of replicates is preferred over a smaller k value for multiple replicates to achieve more reliable estimates of 

accuracy performance [18]. This study underlines the importance of developing new dynamic methods that are more 

resource efficient, because higher k-values lead to higher resource consumption. Imran et al. analyzed 𝑘 values from 2 to 

20 for different machine learning algorithms and found that the optimal 𝑘 varies depending on the chosen algorithm and 

dataset [4]. Overall, this literature shows that the choice of a fixed k-value should be well chosen, with a 𝑘 between 5 and 

10 often recommended. However, this also underlines the need for dynamic methods to optimize the k-value.  

One of these dynamic methods is the racing method. Thornton et al. introduced the racing method, which aims to eliminate 

bad performing model configurations early [15]. This method, also known as F-Race, uses statistical tests to evaluate the 

performance of models step by step and eliminate those that are not performing well. This reduces the number of 

evaluations and increases efficiency [15]. Bergman et al. analyzed the possibility of early stopping of cross-validation in 

automated machine learning and found that by stopping cross-validation early, the model selection process can be 

accelerated without compromising the performance of the models [2]. Compared to e-fold cross-validation, the stopping 

criterion is based on the current evaluated average score of the selected hyperparameter combination and is not based on 

the standard deviation. If this average score is worse than the best average score of a combination so far, it is stopped 

immediately. The goal was to create more hyperparameter combinations in the same amount of time. This led to better 

overall performance and a more comprehensive exploration of the hyperparameter space [2]. Soper et al. introduced Greedy 

k-Fold Cross-Validation, which has the goal of speeding up model selection by optimizing the cross-validation process 

itself. Instead of evaluating all folds of a model sequentially, the Greedy method adaptively selects the next fold based on 

the current model performance [13]. This approach allows faster identification of the best performing model within a fixed 

computational budget or by early stopping, which increases efficiency [13]. Our work is an extension of the previously 

mentioned methods. In contrast to these methods, e-fold cross-validation uses an intelligent selection of folds based on 

statistical stability and is not based on checking whether the aggregated average score is better than the previous one. 

Furthermore, our method is currently not using hyperparameter optimization and has the primary goal of saving resources. 

Recent research has highlighted a critical problem in the machine learning community: Training and deploying machine 

learning models, especially deep learning algorithms, requires significant computational resources, resulting in substantial 

energy consumption and high CO2 emissions [14][12][16]. In the field of recommender systems, Vente and Wegmeth et 

al. have shown how much energy is consumed and how much CO2 is emitted during the experiments, with the result that 

deep learning models significantly increase the environmental impact compared to conventional methods [16]. In order to 

reduce energy consumption, there are studies, which present methods to make machine learning more energy-efficient, 

especially in the area of deep learning and neural networks [11][9]. These methods aim to optimize various stages of the 

machine learning process, focusing on reducing computational demands and improving overall efficiency to lower energy 

use and associated carbon emissions [11][9]. These studies underline the need for more efficient methods to reduce the 

environmental impact of machine learning research and applications. 

 

Note: After acceptance of our paper, we found more related work [24–28], and several of our other submissions related to 

green recommender systems, green machine learning and similar fields were accepted for publication [21–23,29].  



 

 
 

 

 

 

3. E-FOLD CROSS-VALIDATION 

We present the first implementation of e-fold cross-validation, an idea that we recently introduced [1], which modifies k-

fold cross-validation by dynamically adjusting the number of folds to reduce resource consumption while maintaining 

reliable performance estimates. e-fold cross-validation has 2 hyperparameters. First is the maximum number of folds emax. 

We have selected 𝑒𝑚𝑎𝑥 = 10 because this 10 is the highest recommended value for the conventional k-fold cross-validation. 

Second, the stability counter count, which indicates how many times in a row the standard deviation has decreased or 

remained approximately the same. We have chosen count = 2 because we assume that two consecutive iterations with 

decreasing or stable standard deviation are generally a strong indication that the stability of the model is not random but 

actually consistent. The entire dataset 𝐷 is divided into 𝑒𝑚𝑎𝑥 equally sized folds. Let 𝐷 be the entire dataset, then 𝐷 consists 

of {𝑓1, 𝑓2, . . ., 𝑓10}, where each 𝑓𝑖 is an equally sized part of the dataset. In each iteration 𝑒 where 𝑒 ∈ {1, 2, . . ., 10}, the 

model is trained on 90% of the data (𝐷 − 𝑓𝑒) and validated and evaluated on the remaining 10% (𝑓𝑒). As a result of the 

evaluation, the performance 𝑆𝑒 is stored in a list 𝑆, which contains all scores from 𝑆1 to 𝑆𝑒, in other words, 𝑆 consists of 

{𝑆1, 𝑆2, . . ., 𝑆𝑒}. 𝑀𝑒 is the average of all scores contained in 𝑆. 𝑀𝑒 shows the aggregated performance of the model at time 

𝑒. When 𝑒 > 1, the standard deviation 𝜎𝑒 for samples is calculated. When 𝑒 > 2, we check if the standard deviation 𝜎𝑒 

measured in the current iteration is smaller than the standard deviation of the previous iteration, 𝜎𝑒−1. If yes, the stability 

counter variable 𝑐𝑜𝑢𝑛𝑡 is increased by 1. If no, we check whether the absolute difference between the current standard 

deviation 𝜎𝑒 and the previous standard deviation 𝜎𝑒−1 is greater than 5% of the previous standard deviation. If yes, 𝑐𝑜𝑢𝑛𝑡 
is reset to 0. If no, 𝑐𝑜𝑢𝑛𝑡 is increased by 1. If the stability counter 𝑐𝑜𝑢𝑛𝑡 is equal to 2 the cross-validation is stopped, and 

our method terminates. This implies there are no more significant deviations in the model and it is performing stable. 𝑀𝑒 

represents the model’s average performance. This dynamic approach to selecting the number of folds (𝑒) ensures that 

resource usage is minimized without compromising the reliability of the performance evaluation. In figure 1, the e-fold 

cross-validation process is shown in pseudo-code. An example of the implementation can be found on GitHub [20]. 

4. METHODOLOGY 

4.1 Experimental Setup 

We evaluated e-fold cross-validation on 15 datasets 

(table 1) and 10 algorithms.  

The 15 datasets comprised of 10 datasets for 

classification and 5 datasets for regression. The 

classification tasks include both binary and multi-class 

scenarios. The datasets vary in size, number of instances 

and number of classes (table 1), with a focus on small to 

medium-sized datasets for current and future analyses. 

Instances of classification datasets are shuffled with 

scikitlearn’s StratifiedKFold function and then 

randomly split into 𝑒𝑚𝑎𝑥 = 10 folds.   

In 3 of the 15 datasets, preprocessing was necessary to 

ensure that the data was suitable for modeling. In the 

Diabetes prediction dataset, we converted the textual 

variable gender to numeric values to make it usable for 

machine learning analysis. We removed the textual 

smoking_history variable, to reduce complexity. In the 

Air Quality dataset, we removed the RecordID column 

as it only provided a unique identifier and did not 

provide any information for modeling. For the same 

reason, we have removed the StudentID column in the 

Student performance dataset. We did not perform any 

additional normalization or scaling of the data, as the 

focus of the study is on evaluating the method and not 

on optimizing the models. 

 

Figure 1. Algorithm of e-fold cross-validation. 



 

 
 

 

 

 

Algorithms: For classification, we selected the following algorithms: AdaBoost, Decision Tree Classifier, Gaussian Naive 

Bayes, K-Nearest Neighbors, Logistic Regression. For regression, we used the following algorithms: Decision Tree 

Regressor, K-Nearest Neighbors Regressor, Lasso, Regression, Linear Regression, Ridge Regression. All algorithms were 

taken from the standard library of scikit-learn. The chosen algorithms represent a diverse set of different modeling 

approaches. This enables a comprehensive evaluation of the performance, evaluates the robustness and generalizability of 

our method and takes into account different theoretical foundations on which the algorithms are based. The decision to use 

these algorithms is because they cover various modeling approaches and are common in machine learning research. We 

decided to use the default parameters for all algorithms and not to use hyperparameter optimization. In the first step, our 

e-fold cross-validation method should work well regardless of the model’s performance. It is also essential to mention that 

that we performed 100 runs for each algorithm on each dataset, with a different data distribution within the folds. This 

approach demonstrates the applicability of our method to different machine learning models and datasets. 

Table 1: Supplementary information for all datasets 

Classification Datasets 

Dataset Name  Source Instances Features Classes 

Mushroom dataset  kaggle 54035 22 2 

Diabetes prediction dataset  kaggle 100000 8 2 

Heart Failure Prediction - Clinical Records  kaggle 5000 12 2 

Breast cancer wisconsin dataset  scikit learn 569 30 2 

Phishing Websites  OpenML 11055 31 2 

Iris plants dataset  scikit learn 150 4 3 

Optical recognition of handwritten digits dataset  scikit learn 1791 16 10 

Wine recognition dataset  scikit learn 178 13 3 

Student performance  kaggle 2392 13 5 

Air Quality and Health Impact dataset  kaggle 5811 13 5 

Regression Datasets 

fetch california housing  scikit learn 20640 8 - 

Diabetes dataset  scikit learn 442 10 - 

elevators  OpenML 16599 19 - 

cpu small  OpenML 8192 13 - 

ERA  OpenML 1000 4 - 

 

Performance Metrics: We measured performance of the binary classification models with the F1-Score. For multi-class 

classification tasks, we used the weighted F1-Score. We chose the F1-Score because it provides a balanced view of the 

model’s performance [3]. For regression tasks, we used Mean Absolute Error, because it is a robust and easily interpretable 

measure of model error [17]. 

4.2 e-fold Cross-Validation Evaluation Criteria 

We consider the performance of 10-fold cross-validation as ground truth. This means, we expect e-fold cross-validation to 

come as close as possible to this ground truth. In detail, we evaluated the performance of e-fold cross-validation as follows.  

Percentage performance difference: First, we checked how much the performance of e-fold cross-validation deviates from 

the performance of 10-fold cross-validation. In this way, we could measure how accurate the score of our method is 

compared to the ground truth, despite the early stopping. For the evaluation, we calculated the absolute average difference 

in percent between the F1-Score of the 10-fold cross-validation 𝑀𝑒max and the F1-Score of the e-fold cross-validation 𝑀𝑒. 

However, it is important to note that there may be situations in which early stopping does not always offer a significant 

advantage. For example, if the differences between the results of the e-fold cross-validation and the ground truth are 

statistically significant, early termination could lead to an under- or overestimation of the model's performance. In this 

case, additional iterations would be required to obtain a performance estimate that is closer to the actual k-fold cross-

validation result. Furthermore, if the computational resources required to perform all folds are minimal, the risk of less 

accurate performance estimation could be avoided by early termination. 



 

 
 

 

 

 

Saved folds and resources: Second, we checked how many folds were saved by stopping the cross-validation earlier. This 

corresponds to 𝑒𝑚𝑎𝑥 − 𝑒 saved folds which means that we needed 𝑒𝑚𝑎𝑥 − 𝑒 times fewer resources. e-fold cross-validation 

can terminate earliest at 𝑒 = 4, which is the optimum. 

Statistical tests: Finally, we showed the statistical significance of the results by evaluating whether our early stopped score 

𝑀𝑒 falls within the confidence interval. The confidence interval was calculated from all 𝑘 scores in 𝑆. For confidence of 

95%, we used the standard deviation 𝜎𝑘 of the scores and the t-value for the 95% confidence level. The score 𝑀𝑒 was 

considered good if it fell within the upper and lower bounds of the confidence interval. 

The diagrams in figure 2 provides a good overview of the evaluation of the e-fold cross-validation based on real runs of 

our experiment. The first diagram in figure 2 illustrates a successful process of an e-fold cross-validation. The blue line 

represents the individual F1-Scores of each iteration, while the green line indicates the average F1-Score for each iteration. 

The yellow dashed line shows the mean score, the upper and lower boundaries of the 95% confidence interval, calculated 

from the results of all 10 single scores. This example shows that the individual results converge after each fold, leading to 

a decrease in the standard deviation for two consecutive folds. Consequently, the stopping criterion is met, and the red 

dashed line marks the termination after 4 folds. In contrast, the diagram on the right of figure 2 shows an example in which 

the e-fold cross-validation does not terminate. Due to the constantly varying individual scores, the standard deviation does 

not decrease continuously, so that the termination criterion is not met. The diagram in the middle below in figure 2 shows 

that the termination criterion for e-fold cross-validation is met, but the F1-Score is outside the confidence interval. 

Therefore, the F1-Score deviates significantly from the measured 𝑘 = 10 score. Due to the consistent F1-Score in the first 

4 folds, the termination criterion is met early, but the following folds perform with a higher F1-Score. 

 

Figure 2. e-fold cross-validation example based on real runs of our experiment. 

5. RESULTS 

In 96% of all algorithm-dataset combinations, the results were within the 95% confidence interval. It is important to note 

that our evaluation is based on performing 100 runs for each algorithm on each dataset with a different data distribution of 

folds per run. This results in a total of 75 algorithm-dataset combinations with 100 iterations each. The percentage of 96% 

was determined by analyzing the results of 100 iterations for each of the 75 combinations, with 7230 out of 7500 iterations 

falling within the confidence interval. Figure 3 illustrates the distribution of the number of iterations that fell within the 

confidence interval across all 75 different algorithm dataset combinations. The x-axis shows the percentage number of 

iterations that fall within the confidence interval. The y-axis represents the percentage frequency of these values, i.e. how 

often a certain number of iterations occurred within the confidence interval across all 75 combinations.  



 

 
 

 

 

 

A distinct accumulation is observed between 

94% and 99% of all iterations, with a 

particularly notable peak at 98% of all 

iterations, which occurs in 28% of 

combinations, making it the most common 

result. This illustrates the accuracy and 

reliability of our new method and shows that 

the results are statistically significant.  

On average, e-fold cross-validation was 

completed after 5.67 folds (table 2). This 

means that in this experiment, e-fold cross-

validation saved 4.33 folds on average per 

algorithm and dataset compared to a 10-fold 

cross-validation. In other words, we were 

able to save about 40% of resources such as 

evaluation time and energy consumption. 

 

Table 2: Average number of folds after which e-fold cross-validation was stopped for all datasets an algorithms 

 

 

Our results showed that e-fold cross-validation was 

terminated after 4 folds in about 35% of cases (figure 

4). In about 5% of cases, early termination was not 

possible, resulting in the same number of folds as 

with 10-fold cross-validation. These results underline 

the dynamics of the e-fold cross-validation. For 

example, compared to a 5-fold cross-validation, we 

can use fewer folds for a stable performance, and if a 

more accurate estimate of model performance is 

required, we have the option to use more than 5 folds. 

Furthermore, despite the early termination, the 

absolute percentage difference in performance 

metrics between the e-fold cross-validation and the 

10-fold cross-validation remained consistently low. 

For the binary classification datasets, this difference 

averaged less than 1% (figure 5, first graph), with 

outliers of up to 5%. Similar results were obtained for 

the multi-class classification (right graph) and regression (middle graph) datasets, with an average difference of less than 

2% with outliers of up to 16% for multi-class classification and up to 12% for regression. It is also interesting to note that 

larger datasets show a lower variance and percentage difference. These results show that we can achieve a performance 

 

Figure 3. Distribution of the number of iterations within the 95% confidence 

interval for 75 algorithm-dataset combinations 

 

Figure 4. Early stopping using e-fold cross-validation after folds 

across all experiments. 



 

 
 

 

 

 

close to the ground truth even with a smaller number of folds. It should be noted that the results of an e-fold cross-validation 

with 𝑒 = 10 were not included in the calculation. Only the results of the iterations where 𝑒 < 10. Because we do not 

terminate early at 𝑒 = 10 and thus have the same score as the 10-fold cross-validation and thus the percentage difference 

would be 0, which would distort the overall result into the positive. 

 

Figure 5. Percentage difference of the performance metric between 10-fold and e-fold cross-validation over 100 runs for all datasets 

6. CONCLUSION 

In this paper, we reduce the resource consumption of model validation in machine learning by developing and evaluating 

the e-fold cross-validation method. We performed an analysis with 15 datasets and 10 algorithms which were repeated 100 

times with a different data distribution to show the robustness and generalizability of our method. Our results show that e-

fold cross-validation is reliable and resource efficient, making it a good alternative to traditional k-fold cross-validation. 

We find that by dynamically adjusting the number of folds, the consumption of resources is significantly reduced. We 

were able to save around 40% of the computing resources on average across all datasets and algorithms in this experiment 

with e-fold cross-validation compared to 10-fold cross-validation. It is important to note that we should not assume a 40% 

savings in every experiment, as figure 4 shows that the number of resources saved can vary, with some cases achieving 

more and others less. The percentage difference in performance metrics compared to the standard k-fold cross-validation 

was often within a 0.5-2% range and is therefore minimal. In addition, our method is easy to implement and can be quickly 

applied to new and existing machine-learning projects. Our work opens several future research topics, for example, we 

will investigate integrating e-fold cross-validation into hyperparameter optimization in the future. Also, future studies can 

investigate the extension of e-fold cross-validation to other domains, such as deep learning or recommender systems. 

Despite the solid foundation on which our study is based, it is limited in the scope of datasets and algorithms tested. This 

scope can be extended by future work to include larger datasets and more complex models. Especially with larger datasets, 

it would be useful to examine whether and to what extent our method is limited. A potential limitation could be the 

additional calculation time and overhead of e-fold cross-validation, although we do not expect this to be significant. 

Nevertheless, a detailed examination in future work could be informative. An investigation of the effects of the additional 

calculations would also be useful for real-time systems. Furthermore, the dynamic stopping could lead to problems for 

real-time systems, as the unpredictability of the stopping could complicate the predictability of the overall execution time. 

To summarize, e-fold cross-validation is a promising way to achieve resource efficient and faster model evaluation without 

compromising the accuracy or reliability of the results. 
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