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Abstract 
In the domain of academic search engines and research-paper recommender systems, CC-IDF is a 
common citation-weighting scheme that is used to calculate semantic relatedness between documents. 
CC-IDF adopts the principles of the popular term-weighting scheme TF-IDF and assumes that if a rare 
academic citation is shared by two documents then this occurrence should receive a higher weight than 
if the citation is shared among a large number of documents. Although CC-IDF is in common use, we 
found no empirical evaluation and comparison of CC-IDF with plain citation weight (CC-Only). Therefore, 
we conducted such an evaluation and present the results in this paper. The evaluation was conducted 
with real users of the recommender system Docear. The effectiveness of CC-IDF and CC-Only was 
measured using click-through rate (CTR). For 238,681 delivered recommendations, CC-IDF had about 
the same effectiveness as CC-Only (CTR of 6.15% vs. 6.23%). In other words, CC-IDF was not more 
effective than CC-Only, which is a surprising result. We provide a number of potential reasons and 
suggest to conduct further research to understand the principles of CC-IDF in more detail.  
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1 Introduction 
The citation-weighting scheme CC-IDF1 was introduced in 1998 in the digital library and citation-indexing 
system CiteSeer (Bollacker, Lawrence, & Giles, 1998; Giles, Bollacker, & Lawrence, 1998). CiteSeer 
offered a link for retrieving a list of “related documents” beside each search result, and the list of related 
documents was calculated, among others, using CC-IDF. CC-IDF stands for “Common Citation-Inverse 
Document Frequency” and it consists namely of the common citation frequency (CC) for a citation and the 
inverse frequency of documents in a corpus containing that citation2 (IDF). Using IDF to weight citations 
was a novel concept at that time and was inspired by TF-IDF, one of the most popular text-weighting 
schemes in information retrieval (Jones, 1972; Salton, Wong, & Yang, 1975)3. The assumption of IDF when 
applied to citations is that “if a very uncommon citation is shared by two documents, this should be weighted 
more highly than a citation made by a large number of documents” (Giles et al., 1998). However, there is a 
difference between TF-IDF and the traditional CC-IDF measure. In TF-IDF, the term frequency TF 
expresses how often a term occurs in a particular document. In contrast, CC is a binary measure, which 
only specifies if a document contains (1) or does not contain (0) a reference. 

Figure 1 illustrates the rationale underlying CC-IDF. For a given input document di, a list of related 
documents must be identified. All documents that share at least one reference with di are considered 
potentially related, a concept also known as bibliographic coupling (BC). In the example, the 
bibliographically coupled documents are dBC

1, dBC
2, dBC

3, and dBC
4. According to CC-IDF, dBC

1 and dBC
2 are 

the least related documents to di, because they each share only one reference (dcited
1) with di and this 

                                                      
1 Also called CCIDF, CCxIDF, CC*IDF, CC–IDF, and CC×IDF 
2 Note that we will use the terms “citation” and “reference” interchangeably in this paper. 
3 We assume the reader to be familiar with the concept of TF-IDF and do not explain it in this paper. 
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reference is cited in total by three documents in the corpus (dBC
1, dBC

2 and dBC
3)4. Hence, for dBC

1 and dBC
2 

CC-IDF calculates as 𝐶𝐶 × 𝐼𝐷𝐹(𝑑𝑖 , 𝑑𝐵𝐶
1|2
) = 1

3⁄ . In contrast, dBC
4 also shares a single reference (dcited

2) with 

di, but this reference is only cited twice in the corpus (namely by dBC
3 and dBC

4). Hence, 𝐶𝐶 × 𝐼𝐷𝐹(𝑑𝑖 , 𝑑𝐵𝐶
4 ) =

1
2⁄  and dBC

4 is regarded as more closely related to di than dBC
1 and dBC

2. In Figure 1, for all documents in 

the collection, document dBC
3 is the most closely related to the input document di, because they share the 

two references dcited
1 and dcited

2. CC-IDF sums up the individual relatedness values, hence 𝐶𝐶 ×

𝐼𝐷𝐹(𝑑𝑖 , 𝑑𝐵𝐶
3 ) = 1

2⁄ + 1
3⁄ = 5

6⁄ . 

 

 

Figure 1: Illustration of CC-IDF 

Since 1998, CC-IDF has been used in several recommender systems, and served as a baseline in many 
evaluations. Furthermore, CC-IDF is mentioned by researchers as a standard approach for calculating 
document relatedness using citations (Chakraborty, Modani, Narayanam, & Nagar, 2015; Ekstrand et al., 
2010; Huynh & Hoang, 2012; Huynh et al., 2012; Küçüktunç, Saule, Kaya, & Çatalyürek, 2013; Liang, Li, & 
Qian, 2011; Narwekar, 2016; Pan, Dai, Huang, & Chen, 2015; Zhang, Li, Zhang, & Wang, 2012). However, 
there are ambiguous reports regarding the effectiveness of CC-IDF. For instance, sometimes, CC-IDF was 
found to perform better and other times worse than simple bibliographic coupling and co-citation strength 
(Küçüktunç, Saule, Kaya, & Çatalyürek, 2012; Küçüktunç et al., 2013; Liang et al., 2011; Pan et al., 2015; 
Zhang et al., 2012). Compared to more advanced approaches such as HITS, PaperRank, and Katz, CC-
IDF performs usually poorly (Küçüktunç et al., 2012; Pan et al., 2015).  

To the best of our knowledge, CC-IDF has never been compared to CC-Only, i.e. a simple citation 
weighting scheme based only on the CC component and ignoring IDF. This means, the basic assumption 
underlying CC-IDF – namely that “if a very uncommon citation is shared by two documents, this should be 
weighted more highly than a citation made by a large number of documents” – has never been evaluated 
for its effectiveness. Of course, the assumption seems plausible, and for terms the effectiveness of IDF has 
been shown multiple times (Robertson, 2004). However, the absence of empirical evidence on the rationale 
of IDF motivated us to assess its suitability when applied to references5.  

2 Related Work 
To find related documents for a given input document using citations, four assumptions are generally made 
(cf. Figure 2). First, documents that cite an input document can be considered related. Second, documents 
that are being cited by an input document can be considered related. Third, documents that are co-cited 
can be considered related, i.e. documents being cited in the same documents that cite the input document. 
Finally, documents that cite the same documents as the input document can be considered related, i.e. 
documents containing the same entries in their bibliography as the input document (bibliographic coupling). 

                                                      
4 If the input document was considered to be part of the corpus, the number of documents would be four instead of three. However, 
for calculating document relatedness using CC-IDF it does not matter if the input document is counted or not.  
5 An evaluation of CC-IDF was previously conducted in the PhD thesis of Beel (2015); However, the current paper represents the first 
peer-reviewed publication and the first detailed discussion of the evaluation.  
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Beyond literature search and recommender systems, a third practical application of calculating document 
relatedness based on citations lies in the field of academic plagiarism detection (Gipp, Meuschke, & 

Breitinger, 2014). 

 

 

Figure 2: Types of document relations in citation analysis 

Naturally, absolute citation counts are the simplest measure for calculating document relatedness. For 
instance, the more references two documents share in their bibliography, the higher their “bibliographic 
coupling strength”, and thus their relatedness. Similarly, the more frequently two documents are co-cited 
together in other documents, the stronger their co-citation strength. However, there are more sophisticated 
relatedness measures, several of which we will briefly present in the following sections. 

 

 

Figure 3: Document relatedness using co-citation 

2.1 Relatedness using Co-Citations 

Assume that an input document di is cited by two documents dciting
1 and dciting

2 (cf. Figure 3) Each of the two 
documents also cites one more document, namely dCC

1 and dCC
2. The co-citation strength of dCC

1 and di as 
well as of dCC

2 and di is 1 because they are each co-cited one time. The question that arises is which of the 
two documents is more closely related to di. There are various approaches to answer this question. Among 
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the oldest is “relative co-citation strength”, which was introduced by Small (1973). The relative co-citation 
strength divides the absolute co-citation strength by the number of all cited papers. The relative co-citation 

strength of di and dCC
1 in Figure 3 is 1 1⁄ , because di and dCC

1 are co-cited once, and in total the co-cited 

document dCC
1 is cited only once in the document corpus6. In comparison, for di and dCC

2 the relative co-

citation strength is 1 3⁄  because dCC
2 is cited in total three times by the documents of the corpus. This 

concept of relative co-citation strength corresponds to the idea of IDF. 
A more recently proposed alternative to relative co-citation strength is co-citation proximity analysis 

(CPA), which uses a co-citation proximity index (Gipp & Beel, 2009). The index expresses the proximity at 
which two documents are cited within a paper. Figure 3 illustrate how di and dCC

1 are cited by dciting
1 in close 

proximity, i.e. in the same sentence. Hence, di and dCC
1 are considered closely related. In contrast, di and 

dCC
2 are cited by dciting

2 in less close proximity, i.e. in different paragraphs. Hence, di and dCC
2 are considered 

less closely related. Variants of the CPA approach, and an overview of additional citation-based measures 
are described by Gipp (2014, p. 47). Beyond academic citations alone, co-citation proximity analysis has 
also been demonstrated as suitable when applied to links, for example, to generate literature 
recommendations for related Wikipedia articles (Schwarzer et al., 2016). 

2.2 Relatedness using “Cited” relations 

Assume that an input document di cites two documents dcited
1 and dcited

2 (cf. Figure 4). To calculate document 
relatedness between di and the cited documents, the frequency of in-text citations can be used as a weight 
(Gipp, Beel, & Hentschel, 2009). In Figure 4, dcited

1 is cited three times in the body-text of di, while dcited
2 is 

cited only once. Hence, dcited
1 is considered more related to di than dcited

2. Another approach includes 
considering how often a document is cited overall, and to then decrease the weight of highly cited papers. 
In the example, dcited

1 is only cited by di, while dcited
2 is also cited by two other documents do

1,2. Hence, dcited
1 

is assumed to be more closely related to di than dcited
2.  

 

 

Figure 4: Document relatedness using “cited” relations 

2.3 Relatedness using Bibliographic Coupling 

We explained bibliographic coupling in the introduction and in Figure 1. However, there are additional 
variations. In Figure 5, all four documents dBC

1…4 share one reference with di. Hence, the absolute 
bibliographic coupling strength between dBC

1…4 and di is always 1. One option for calculating a relative 
bibliographic coupling strength is to analyze what percentage of the bibliographies of two documents 
overlap. In the example in Figure 4, di and dBC

4 have one reference in common (dcited
2), but dBC

4 cites two 
additional documents (do

1 and do
2). This means, di shares only 1/3 of the references with dBC

4. In contrast, 

                                                      
6 We regard the input document as external to the document corpus. If it was part of the document corpus, all counts would increase 
by one.  
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the documents dBC
1…3 all cite only a single document (dcited

1). This means, di shares 100% of its references 
with dBC

1…3. Consequently, according to relative bibliographic coupling strength, dBC
1…3 could be considered 

more related to di than dBC
4.  

We would like to emphasize that this type of relative bibliographic strength may lead to different 
results for document-relatedness than CC-IDF. With CC-IDF, dBC

1…3 would be considered less related to di 
than dBC

4, because dBC
4 and di share a rarely cited reference (dcited

2 is cited only once), while dBC
1…3 and di 

share the reference dcited
1, which is cited three times. 

 

 

Figure 5: Document relatedness using bibliographic coupling 

3 Methodology 
To evaluate the effectiveness of IDF applied to citations, we compared the effectiveness of CC-IDF with 
CC-Only. The evaluation was conducted using the recommender system of the reference-management 
software Docear (Beel, Gipp, Langer, & Genzmehr, 2011; Beel, Gipp, & Mueller, 2009; Beel, Langer, Gipp, 
& Nürnberger, 2014; Beel, Langer, Genzmehr, & Nürnberger, 2013). Docear is comparable to the tools 
JabRef, Zotero and Mendeley, which enable users to organize their references and PDF files (typically 
research articles, and occasionally other resources, such as websites). A unique feature of Docear is that 
the collections are not simply lists of references and PDF files, but are structured as mind-maps into which 
users can insert references or link PDF files (Figure 6). For our current research, this distinction is not of 
importance, since we only require a large number of users, each of whom has one or multiple collections 
(i.e. mind-maps) with a number of references and PDF files. 

Compared to the original CC-IDF approach, we implemented some changes to make the approach 
applicable to our scenario. In the original CC-IDF approach, there is one input document for which a list of 
related documents is wanted, and related documents are found via bibliographic coupling with CC-IDF 
weighting. We utilized a user’s collection of mind-maps as input (instead of a single research paper), and 
we interpreted the link to, or reference of, a paper in a user’s collection as a citation of that paper7. In 
addition, the original CC-IDF approach uses a binary weight for the CC component. We calculated CC as 
the frequency for how often a reference or link to a paper occurred in a user’s collection. The identification 
and matching of papers was done only by comparing titles. In the case of PDF files, titles were extracted 
with Docear’s PDF Inspector (Beel, Gipp, Shaker, & Friedrich, 2010; Beel, Langer, Genzmehr, & Müller, 
2013).  

Figure 7 illustrates the recommendation process. Similar to an input document di that references 
documents d1 and d2, a user has documents d1, d2, and many other documents in his or her collection. In 
the example (cf. Figure 7), the two most recently added documents, i.e. d1, and d2, are used to build the 
user’s user model. The user model um equals a “joined” document that contains all the references from the 
selected documents, in this case, the user’s collections of mind maps. The recommendations are displayed 
in Docear (Figure 8). Users were automatically shown new recommendations every few days and they 
could additionally request recommendations explicitly. For more details on Docear’s recommender system 
please refer to Beel, Langer, Kapitsaki, Breitinger, & Gipp (2015), Beel (2015), Beel et al. (2014) and Langer 
& Beel (2014).  

 

                                                      
7 More precisely, our recommender system only utilized a subset of the user’s most recently added documents. 
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Figure 6: Screenshot of Docear 

 
 

 

Figure 7: CC-IDF in the context of user modelling 
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Figure 8: Recommendations in Docear 

We evaluated the effectiveness of CC-IDF and CC-Only with an A/B Test. Whenever recommendations 
were generated, one of the two weighting schemes was randomly chosen, and the click-through rate was 
recorded (CTR). CTR describes the ratio of displayed recommendations to clicked recommendations. For 
instance, when 10,000 recommendations using CC-IDF were made and 500 of these recommendations 

were clicked, the average CTR of CC-IDF would be 
500

10,000
= 5%. The assumption is that the higher the CTR, 

the more effective the weighting scheme. There is some discussion to what extend CTR is appropriate for 
measuring recommendation effectiveness, but we found CTR to be well suitable for our scenario, because 
we found that it correlates well with user ratings (Beel, Breitinger, Langer, Lommatzsch, & Gipp, 2016; Beel 
& Langer, 2015). As an additional baseline, we measured the effectiveness of classic TF-IDF and TF-only. 
In this assessment, the terms from a user’s document collection were utilized instead of the references. 
Between January 2014 and September 2014, 238,681 recommendations were delivered to 3,561 users. 
Unless stated otherwise, all results are statistically significant based on a two-tailed t-test (p<0.05).  

4 Results & Discussion 
As expected, TF-IDF (CTR = 5.09%) performed significantly better than TF-Only (4.06%) (Table 1). This 
confirms the well-known finding that TF-IDF is superior over TF-only as a weighting scheme. 

However, there was no statistically significant difference between CC-Only (CTR = 6.23%) and CC-
IDF (6.15%) (Table 1). The result remains the same when looking at different numbers of references being 
utilized (Figure 9). The effectiveness of CC-IDF and CC-Only is about the same. For instance, when a user 
model contained 15 to 24 references, CTR for CC-Only was 6.50% and for CC-IDF 6.35%.  
 

 
 

Table 1. Number of delivered recommendations, clicks, and CTR for the different weighting schemes 
 

CC-Only CC-IDF TF-Only TF-IDF

Delivered 24,821           27,986          139,474          46,400        

Clicks 1,546             1,721            5,665                2,361          

CTR 6.23% 6.15% 4.06% 5.09%
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Figure 9: CTR for CC-IDF and CC-Only based on the number of utilized references 

From the observed results, we would conclude that CC-IDF and CC-Only are equally effective, i.e. 
calculating IDF does not increase effectiveness compared to using CC-Only. Consequently, there would 
be little reason to use CC-IDF, because it is more complex to calculate than CC-Only. However, it is too 
early to draw such general conclusions from our results for the following reasons: 

 
1. CC-IDF is usually applied in the context of related-document search. We applied it in the 

context of user-modelling. Although, we believe that this should not make a significant 
difference, we suggest to conduct additional research in a classic related-document scenario.  

2. The document corpus of Docear is rather small (2 million documents). We could imagine that 
CC-IDF performs better on larger corpora. Consequently, we suggest to research the 
effectiveness of CC-IDF on a larger corpus.  

3. Many users of Docear have only few references in their collection. It might be interesting to 
analyze how CC-IDF performs with users who have larger document collections with many 
references.  

4. We used ParsCit to extract references from the recommendation candidates (Councill, Giles, 
& Kan, 2008). ParsCit has a reasonable, but not an outstanding accuracy. Hence, our 
reference data might be noisy and of mediocre suitability for calculating IDF values. We 
suggest performing further evaluations with reference data of higher quality.  

5. We did not use a binary weighting for the CC component. Although we believe that this should 
not significantly affect the effectiveness of IDF, it might be sensible to nonetheless repeat our 
experiment with a binary CC component.  

 
Despite the limitations of our research, there are a number of reasons why CC-IDF might indeed not be a 
significant improvement over CC-Only. Please note that the following hypotheses are still speculative, and 
that more research will be required in order to confirm or reject each assumption.  

 
1. Research papers usually contain thousands of unique terms. Consequently, it is important to 

identify the most descriptive terms. In contrast, a research paper usually contains few 
citations (maybe 5 or 10 for conference papers, or 30 for journal article, although this number 
can differ widely depending on the discipline). Consequently, the need – and the potential 
benefit – of identifying the most important citations is lower, because likely almost all 
references in an article will have some significance.  

2. In a large corpus, some terms occur in millions of documents. In contrast, even the world’s 
most frequently occurring reference occurs only in 305,000 citing documents8; and the vast 
majority of references occurs only in few documents, because typically research papers 
receive few citations (or none at all). Consequently, IDF values for citations will be within a 

                                                      
8 http://www.nature.com/news/the-top-100-papers-1.16224 
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smaller range than term-based IDF values. Therefore, we would expect IDF when applied to 
references to be less effective than IDF when applied to terms.  

3. Older papers have more time to accumulate citations, while recently published papers 
typically have few or no citations. CC-IDF does not account for this, which could bias IDF 
calculations9. For instance, consider the previous example of bibliographic coupling and CC-
IDF (cf. section 2.3), but this time assume that dcited

1 was published in 1982, and dcited
2 was 

published in 2016 (Figure 10). CC-IDF would be 1/3 for dBC
1…3 and 1 for dBC

4. However, given 
the publication years, it would be expected that dcited

1 has more citations than dcited
2, and we 

intuitively would not believe, for instance, that dBC
3 is less related to di than dBC

4. We therefore 
suggest to analyze how CC-IDF performs when normalized by the documents’ publication 
years.  

4. CC-IDF does not normalize for the number of entries in a bibliography and may provide 
different recommendations than a classic relative bibliographic-coupling strength (see 
section 2.3). In future research, we suggest comparing CC-IDF with relative bibliographic 
coupling strength and also to evaluate the effectiveness of a CC-IDF measure that 
normalizes for the number of entries in a bibliography.  

5. CC-IDF favors recommendation candidates that reference rarely cited papers over 
candidates that reference highly cited-papers. Maybe, papers that reference rarely cited 
papers tend to be of a different type than papers that reference highly cited papers, and 
maybe the latter type is more suitable for recommendation. For instance, we could imagine 
that papers with few citations might have a higher proportion of self-citations or citations from 
co-authors than highly cited papers (again, this is a speculative assumption to be examined). 
However, recommending a paper to a user, which the user or a co-author authored is 
probably not suitable, because the user already knows this paper. If this assumption were to 
be true, it would be interesting to analyze the performance of CC-IDF when self-citations 
were ignored in the calculations.  

  

Figure 10: Illustration of a normalized CC-IDF measure 

In summary, we were surprised to discover an equal performance of CC-IDF and CC-Only in our evaluation. 
Although we provided some arguments why CC-IDF might not be more effective than CC-Only, we are still 
supportive of the underlying assumption behind CC-IDF and believe that there must at least be some 
scenarios in which CC-IDF is more effective than CC-Only. We would also like to emphasize that the 
performance of CC-IDF varied strongly in experiments of other researchers who compared CC-IDF to e.g. 
bibliographic coupling (cf. section 1). Therefore, we suggest to conduct further research to gain insights on 
whether, and in which cases, CC-IDF is a suitable weighting scheme. 

                                                      
9 To some extent, the same might be true for terms, but we assume the effect to be much stronger for citations. 
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