
 1 

Virtual Citation Proximity (VCP): Calculating Co-Citation-
Proximity-Based Document Relatedness for Uncited 

Documents with Machine Learning [Proposal] 
Joeran Beel, Department of Computer Science and Statistics, Intelligent Systems, KDEG Group, ADAPT Centre, 

joeran.beel@adaptcentre.ie  
 

Abstract. The relatedness of research articles, patents, legal 
documents, web pages, and other documents is often calculated 
with citation or hyperlink based approaches such as citation 
proximity analysis (CPA). In contrast to text-based document 
similarity, citation-based relatedness covers a broader range of 
relatedness. However, citation-based approaches suffer from the 
many documents that receive little or no citations, and for which 
document relatedness hence cannot be calculated. I propose to 
calculate a machine-learned ‘virtual citation proximity’ (or 'virtual 
hyperlink proximity') that could be calculated for all documents for 
which textual information (title, abstract …) and metadata (authors, 
journal name …) is available. The input to the machine learning 
algorithm would be a large corpus of documents, for which textual 
information, metadata and citation proximity is available. The 
citation proximity would serve as ground truth, and the machine-
learning algorithm would infer, which textual features correspond 
to a high proximity of co-citations. After the training phase, the 
machine-learning algorithm could calculate a virtual citation 
proximity even for uncited documents. This virtual citation 
proximity would express in what proximity two documents would 
likely be cited, if they were cited. The virtual citation proximity then 
could be used in the same way as “real” citation proximity to 
calculate document relatedness, and would potentially cover a 
wider range of relatedness than text-based document relatedness.  
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1 INTRODUCTION  
Retrieving a list of ‘related documents’ – e.g. web pages, patents, 
or research articles – for a given source document is a common 
feature of many applications, including recommender systems 
and search engines (Figure 1). Document relatedness is typically 
calculated based on documents’ text (title, abstract, full-text) and 
metadata (authors, journal …), or based on citations/hyperlinks 
[1–10]1. The intuition behind text-based relatedness measures is 
that two documents are more highly related the more terms they 
share (in place of terms, concepts, topics, n-grams, embeddings, 
etc. may also be used [11–17]). The intuition of citation-based 
relatedness is that authors cite documents because they consider 
them to be related to the manuscript they are currently writing. 
Consequently, two documents that are (co-) cited are both related 
to the citing document and to each other [18–24].  
 

                                                                 
1 In the current proposal, I focus on the relatedness of research articles 
based on citations. However, the work proposed here could easily be 

While text-based relatedness is about the similarity of documents, 
i.e. the proportion of terms they have in common, citation-based 
relatedness is broader. Two documents can be co-cited, and hence 
related, for many reasons [25–29]. For example, the two 
documents may use the same algorithm (to solve the same or 
different problems); the two documents may be written by the 
same author; or the two documents may be co-cited for less 
predictable reasons, for example if both are examples of well-
written academic articles and the citing author is writing a book 
on academic writing.  Today’s text-based methods can hardly 
calculate such types of semantic relatedness. 
 

 
Figure 1: Google Scholar’s "Related article" feature 

 
Figure 2: Citation-Proximity Analysis 

One particularly effective citation-based approach is citation 
proximity analysis (CPA) (Figure 2) [30–36]. Its intuition is that 

extended or shifted to calculating relatedness of patents, legal documents, 
and web pages based on citations or hyperlinks. 
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the closer the proximity in which two documents are cited in a 
text, the more highly related the two documents are. For instance, 
if two documents A and B are cited within the same sentence, they 
are more highly related than documents A and C that are cited in 
different paragraphs (Figure 2). Citation-proximity analysis has 
successfully been used to calculate relatedness of research articles 
[30–36], as well as the relatedness of Wikipedia articles [37], [38], 
web pages [39], and authors [40]. 

2 RESEARCH PROBLEM 
Although citation-proximity may be very effective, it suffers from 
the same problem as other citation-based approaches: To calculate 
relatedness, documents need to be (frequently) co-cited. However, 
most research articles are never cited, and it usually takes a year 
or more before a document receives its first citation [41], [42]. 
Consequently, document relatedness based on citation-proximity 
can only be calculated for few documents in a corpus and tends to 
work best on older documents.  

3 RESEARCH GOAL 
The research goal is to develop a citation-proximity-alike 
relatedness method that works for less cited and uncited 
documents. The new method should reflect the variety of 
relatedness that may be expressed through co-citation proximity.  
This means the relatedness should not simply be based on the 
proportion of terms that two documents share and hence only 
express the degree of similarity. 
 
To achieve the goal, I propose to calculate a ‘virtual citation 
proximity’ that is machine learned. The input to the machine 
learning algorithm would be a large document corpus including 
the documents’ text (title, abstract, full-text, references/citations) 
and metadata (authors, journal …), and their citation proximities. 
Based on the co-citation proximity as ground truth and the textual 
features and metadata, the machine-learning algorithm will infer 
what features make a co-cited document pair related. 
Subsequently, the algorithm calculates a virtual citation proximity 
based only on documents’ textual features and metadata. This 
virtual citation proximity would express in what proximity two 
documents would likely be cited, if they were cited. Once the 
machine learning algorithm is trained on a sufficiently large 
corpus, it could calculate the virtual proximity for any document 
pair for which textual information and metadata is available. Once 
the virtual citation proximity is calculated, it could be used in the 
same way as the normal citation-proximity to calculate document 
relatedness (e.g. calculate the citation-proximity index, CPI [31]).  
 
Although virtual citation proximity is based on textual features 
and metadata, I hypothesise that it will produce similar results as 
real citation-proximity, since the machine learning model is based 
on real citation proximity as ground truth. With the recent 
advances in machine learning, particularly deep learning, I 
hypothesise that a (deep) machine-learning algorithm will be able 
to detect hidden layers in the text. These will allow determining 
what makes two documents related, more reliable than the typical 
assumption in text-based approaches that two documents are 
related when they share the same terms. 

 
Virtual citation proximity will combine the best of both worlds, 
i.e. it can be calculated for every document (like today’s text-based 
methods), yet provide a high variety of relatedness and be highly 
effectiveness (like today’s citation-based approaches). Hence, 
virtual citation proximity has the potential to advance 
significantly related-document calculations for search engines 
and recommender systems. Related-document calculations will 
not only improve for academic documents but potentially for legal 
documents, patents, medical documents and web pages, too. In 
latter case, the method should be called ‘Virtual Hyperlink 
Proximity’ or ‘Virtual Link Proximity’. 

4 RELATED WORK 
The method that is closest to using citation-proximity as ground 
truth is using expert judgements like the biomedical classification 
MeSH [43–45], the ACM classification [46], DMOZ [47], or ACL 
[48]. The MeSH classification represents the major fields in the 
biomedical domain and was created by medical experts (Figure 3). 
New biomedical publications are often classified with MeSH, i.e. 
they are assigned to one of the MeSH categories, and two 
documents in the same category are considered to be related. 
Machine learning algorithms can infer from the existing 
documents in a category, which textual features make a document 
likely to belong to a certain category. New documents can then 
automatically be classified.  
 

 
Figure 3: Excerpt of MeSH  

There are several disadvantages to using expert classifications like 
MeSH. First, they are one-dimensional, i.e. they provide only one 
type of relatedness (typically, the overall topic a research article 
is about). However, there may be many other dimensions of 
relatedness (e.g. a shared algorithm or shared methodology 
applied in different domains). Second, most classification schemes 
allow documents to be in one or two categories only. Especially 
with today’s increasingly interdisciplinary work, this is often not 
enough to adequately find all related documents. Third, 
classification schemes typically have a limited number of 
categories (a few dozen or hundreds). This means, every category 
contains thousands of documents that might be somewhat related 
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but only at a broad level. Fourth, the classifications are static, i.e. 
articles are classified at the time of publication. If a classification 
scheme is changed, the papers usually cannot be updated. Finally, 
for many domains, expert classifications do not exist. Hence 
document relatedness in these domains is difficult to learn.  
 
With citation proximity as ground truth, the mentioned problems 
could be overcome. (Virtual) citation proximity (1) covers many 
types of relatedness; (2) allow documents to be in unlimited 
numbers of co-citation clusters; (3) has no limitations for the 
number of clusters; (4) is dynamic; and (5) can be learned for any 
domain that uses citations.  

5 PROPOSED METHDOLOGY 
To achieve the research goal, a number of tasks need to be 
undertaken.  

• A thorough literature review on citation-proximity 
analysis, and other methods to calculate document 
relatedness, both text-based and citation-based. This 
includes a review of currently used ground-truth such 
as MeSH but also related fields such as social-tagging 
[49], folksonomies [50], and query log analysis [51], 
which are sometimes used to train machine learning 
algorithms. 

• Identification of promising machine-learning 
algorithms that could be capable of learning and 
calculating virtual citation proximity. This includes both 
‘normal’ machine learning algorithms as well as deep 
learning algorithms.  

• The compilation of a large dataset containing co-
citation proximity information and text and metadata of 
the co-cited documents. The dataset ideally contains 
tens of millions of articles, and hundreds of millions of 
citations from different disciplines (e.g. biomedical, 
computer, and social sciences). Depending on the 
eventual project scope, the corpus could focus on 
research articles, legal documents (laws, rulings, …), 
patents, web pages, or massive content repositories such 
as Wikipedia.  

• Evaluation and fine-tuning the different machine 
learning algorithms. The evaluation should be 
performed in two ways. First, using an offline dataset. 
This means, a part of the previously created dataset will 
not be used for training the machine learning 
algorithms, but to evaluate the effectiveness. Second, 
the algorithms could be evaluated in a live search engine 
or recommender system (for instance in Mr. DLib [52]). 

6 OUTLOOK 
It could further be interesting to use machine learning to 
understand why documents are cited in close proximity, and 
incorporate this knowledge into the relatedness-calculation 
process. Considering citation context [53–55], i.e. the sentences 
surrounding a citation, might further improve the calculation of 
virtual citation proximity. It might also be interesting to take bias 
and motivation to create citations into account [27], [56], [57], e.g. 

citations that were done for illegitimate reasons should be 
removed from the training corpus. Finally, the concept of virtual-
citation proximity might also be used to improve related 
applications such as co-authorship analysis [58] and identifying 
related authors. 
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